世界上到底有多少个我不知道的“最大同性交友网站”? - 知乎切换模式写文章登录/注册世界上到底有多少个我不知道的“最大同性交友网站”?MeTown懂玩具,更懂情趣互联网时代人与人之间的距离总是很近。交流模式也随着网络发展开始改变。其中一些常规词汇也在传播中产生了讹变。带着些许自嘲与自污,虽说看客一般一头雾水,但使用者普遍乐在其中。就比如“同性交友网站”这个名头。事实上,在说到同性交友网站的时候。我想你脑中显现的可能是这样一副场景。但实际上,在现在互联网语言中。这是一个梗。这个说法最早是被放在弹幕网站Acfun上的。Acfun,简称A站。口号是“认真你就输了”虽说对于现在很多人来说有些陌生。但大家都是上网冲过浪的人。如果你知道金坷垃梗的话。这部鬼畜元祖最初就是出自A站。而同性交友网站的说法最初也是出自A站。这或许要追溯到A站的个人信息设置。他们出人意料的加了个“性取向”的设置。而根据网络传闻。有许多没有进行过信息设置的用户们发现。A站的默认性取向是“同性恋”当然,A站具体被称为同性交友网站的原因是否来源于此我们并不知晓。但不得不承认的是,这个概念至少在早期阶段深入人心。毕竟有网友在旅游的时候都看到了这句经典名言。足见其民众基础。但很可惜的是,由于时间变幻。同性交友网站这个名头被另一个网站给夺走了。而且恰好的是,这个网站叫B站。全名Bilibili。坊间传闻,B站CEO陈睿在某次接受专访的时候说过:“我们一直想给B站找个定义。想来想去,还是‘最大的同性交友社区’。”而“最大同性交友社区”也颇为符合b站用户的喜好。用户们甚至还自发的P了这么一张梗图。堪称坐稳了同性交友社区这一称号。但如果我们把同性交友网站的范围放大到全球范围。最大同性交友网站这个名头会再次易主。而且这次夺过这个名头的是个极为硬核的外来网站。名为GitHub。如果说PornHub是宅男们的休憩之地。那么GitHub就是程序员的快乐源泉。这个网站上汇聚了200多个国家的开发者,注册用户已经超过了3000万。每年在上面提交的代码都超过3亿行,这里是码农们的圣地,也是全球最大同性交友网站。由于其高达95%的男性用户占比。这个网站也被戏称为GayHub而且,虽然是个戏称。但这群技术宅的骚操作也不少。就比如在2018年的时候,一个叫神楽坂 覚々的 Github 用户,创建了 Dress 这个项目。而神楽坂 覚々给 Dress 这个项目定了一个参与规则:男,上传自己的第一张女装照。没错,就是女装。这个项目在一周内就吸引到了50多位女装大佬的参与。而这个项目在后续也吸引到了300位大佬的爆照与3000余位用户的标星。这群欢乐的技术宅们也并未把这个项目当成一个纯粹的整活操作。最后这里成为了一个学习GitHub的项目。里面有大量手把手教学,先进带动后进,教会无数0基础入门者如何使用Github。甚至于这个项目在后期还吸引到了女孩子的申请加入。但可惜的是,被无情拒绝了!不愧是你啊,GayHub。但话说回来,GitHub这个网站之所以受欢迎。并非完全因为放飞自我的码农们在这上面搞同性交友。事实上,在这个网站里,有无数沙雕气息四溢的有趣灵魂用自己的专业技能骚操作不断。就比如传说中用菜单栏摸鱼的——Thief-Book。这玩意儿能把小说藏在桌面的底部菜单栏里。用起来十分方便且隐蔽,还是个开源程序。完美符合上班摸鱼的所有条件,妈妈再也不用担心我上班看小说被抓包了!而除了摸鱼神器之外。前段时间在互联网上很火的狗屁不通文章生成器也出自这里。只需要输入主题,瞬间就能整理出一篇万字长文。让人不得不惊叹于这位兄台的脑洞之大。而这些透屏而出的沙雕快乐气息也并非只存在于软件的使用上。实际上,还能存在于代码之间。就比如有些老哥会在代码中注解下自己对编程的理解。一字一句都带着些许看破红尘的哲学意味。多少有些龙场悟道了。不过话说回来,虽然看似有些不靠谱。但是从实际上来说,GitHub其实是一个非常优秀的网站。前段时间大火的文言文编程语言其实也是出自这个网站的。虽说我不懂编程,但是在看到这个编程语言之后。我发现我不懂的不仅是编程。我连中文都不懂了。只能感慨一句,大佬整活都整的与众不同。当然,想必大家也发现了。这些网站除了同性交友。实际上也是许多人的乌托邦。沙雕气质与硬核做派成为了一道风景线。这或许就是“同性交友”的另外一重含义吧。Salute发布于 2022-04-22 15:28同性恋恋爱交友网站男同性恋赞同 212 条评论分享喜欢收藏申请
同志社交的最终最佳途径是什么? - 知乎首发于Giscovery同志观察切换模式写文章登录/注册同志社交的最终最佳途径是什么?包翔Dr.B作者丨CY(文章有点长,请您耐心阅读,相信一定会让您有所收获的!)同志社交的最终最佳途径,是Blued?Alo?还是加入一些基友微信群?又或者是上知乎、豆瓣等网站寻找同志版块?越来越多的同志已经厌倦了互联网社交的低效率性、我们投入太多的时间在网络上,并没有达到真正有价值的社交,而是被海量的、碎片化的、无营养的互联网信息数据浪潮所拍打。同志互联网社交的没落1.“知乎”成“基乎”?并不乐观的网站社交最早,知乎是一个邀请注册制的网站,随着开放注册,用户结构发生了巨大了的变化。知乎本来是一个以问题为中心的,偏重于学术讨论的高质量内容输出型网站,却因开放注册,慢慢变成了“故事会”。这在同志版块更为明显:最早的知乎同志版块,不乏有趣的多元性别议题和干货内容,也不乏对于国内同志社会学、心理学问题的深度讨论。而如今,知乎的同志版块却变成了发帖征友的交友版块,这似乎违背了早期知乎的网站主旨,虽然知乎在官方的社区规则下明令禁止交友贴与钓鱼贴,但似乎是因为具有一定流量变现的营销价值,知乎从未真正整顿过此类帖子。而事实上作为一个重点互联网营销阵地,知乎上也出现了极多同志相关自媒体、代孕公司或其他企业的营销内容,可惜的是,很多年轻基友难以判断内容的营销性质,同时,许多营销内容一味专注于同志“速配找对象”、“注重颜值身材”、“渴望家庭”的痛点,带动表面主义与浮躁主义,并未产出真正有益于同志寻求正能量健康生活方式的营养内容。堪忧的是,知乎同志版块的社交贴总是存在暴露隐私以及私信骚扰的问题。这无不于开放注册后的用户数量及结构相关。在早期以书影音为爱好的文艺青年聚集地——豆瓣也同样是如此,一个用户可能在知乎没有任何精彩的回答或提问的精彩讨论内容、在豆瓣没有任何的对于书影音等文艺内容的讨论,便可以注册后在同志版块发帖,这与早期的搜同、帅同、BF99等同志相亲交友网站如出一辙。我们并不否认这些网站具有交友的附带属性,但他们并不是专门的“同志社交”网站,也就意味着用户理应在满足网站本体主旨,产生个体内容输出的情况下进行附带的社交行为。马甲号、小号、同志社交专用号的出现,拉低了这些网站同志版块的内容质量,也更容易让直人群体产生同志“饥渴”的误解。而百度贴吧则更是可怕——低龄、低质量的内容比比皆是。我们不相信学历和年龄对个体社交会有决定性因素,但不可否认它们是因素之一。根据CNNIC的第40次中国互联网调查,截止2017年6月,我国的网民学历仍以中等学历为主,网民学历中,小学及一下占16%、初中占37.9%,高中/中专/技校占25.5%、大专占9.1%、大学本科及以上占11.6%,年龄分布中,10-19岁占19.4%、20-29岁占29.7%、30-39岁占23%、40-49岁占14.1%。同志群体网站社交的形式,在由大量你不知道“操作键盘的到底是谁”的用户存在下,有意或无意地“强化同志标签”,已然让这一方式走向式微。2.Blued、Alo的失败与伟大Blued是伟大的,它让同志社交变得似乎触手可得,尤其是让二三线及以下城市的同志拥有了可能是唯一接触同类群体的途径。耿乐曾在2017彩虹媒体奖的颁奖典礼上发言说过:“你们考虑过我们国家大量农村和小城市的同志社交吗?”而Blued也是失败的,正因为它的开放性和用户量大的特点,作为一家企业,营销和流量变现是第一位的。因此,它所引导和产出的内容必须更符合它最大的目标用户群的需求——注重颜值、身材、物质条件。这从Blued官方所扶植的直播内容、商城、代孕中明显可以看出。然而,当我们有幸与Blued内部工作者讨论为什么不产生更多深度有价值的内容时,他们会表示很难,因为他们的用户并不喜欢那些,也并不能更好地达成流量变现。而用户层次良莠不齐、年龄逐渐大叔化的现象在这些APP平台则更为明显。Blued和Alo共同存在的问题是将同志社交往表面主义的浮躁社交引导。这从该App的个人页面便可以看出——用照片来决定喜欢不喜欢。事实上,并非是每一个同志都那么注重颜值,何况在这些App上存在大量的虚假照片。而对于颜值外的进一步同志社交,这些软件的设计并没有很好地去注重。而Blued、Alo并不会倒,一是用户量和资金流的保证,二是它们同样也做到了同志社交的痛点——基于地理位置,也因此他们也成为了部分同志线上社交转换为线下社交的通道。虽然,在这些APP上由线上社交转化为线下的过程,在约炮以外,会让用户耗费太多太多的时间精力。3.被水淹没的微信群——非熟人社交的尴尬应用很多人加入了微信的基友群,期望遇到自己可以撩的人,但却渐渐被表情包、撕逼、外卖红包、小程序分享、潜水员、广告所淹没。事实上,这并不是微信群的错,好的基佬群太少太少,归根结底,问题在于,微信的设计,本就是用来熟人社交的。当我们在线下成为熟人后建立微信群,我们并不会对该群有那么多的不满,这时候,微信群并不是认识新人的渠道,而是社交的工具。而微信的功能本身,就并不满足陌生人社交的特点。微信群更是缺乏相关的管理功能。陌生人微信群本身就有代谢周期,在陌生人社交群很可能会出现“小圈子”、“大量潜水员”、“表情包、广告泛滥”的现象,然后很快沉寂,即便是有主题的微信群。微信不适合作内容沉淀,也意味着并不适合陌生人的深入社交。当我们谈及QQ,我们可能会发现QQ的同志群体,正面临“人肉广告机”的侵袭。微信群消耗了太多同志在陌生人社交上的期望和时间精力。我们并不应该将更多陌生人社交的期望放置于微信群、QQ群。总而言之,微信更适合作为熟人社交的工具,而不是陌生人社交的渠道。对同志群体来说,更是如此。4.互联网对社交的减益抖音、头条新闻、微博等碎片化信息的时代,正在改变我们人脑的认知,我们逐渐变得更加浮躁,对有深度、有价值的沉淀内容变得不耐烦,对我们的社交习惯改变也是如此。因此,长期接触互联网社交的同志,他们的社交习惯,以及对于感情的认知,也变得碎片化——常常难以维系长久稳定的感情。碎片化的网络社交同时也让我们越来越“不会说话”,沉迷于网络社交的同志个体更可能拥有线下真实社交时的社交障碍,很可能在线下变得尴尬、易脸红,哑口无言,而事实上我们都知道,线下真实事件的社交将会伴随我们一生,并不仅仅在同志社交上。互联网社交总有虚假性。我们常常会发现照片,或者“网上话超多超浪”的同志个体,在线下安静地一句话都说不出。互联网社交更容易传播同志社交的负能量,2017年的研究文献《中国社会文化背景下社会态度对同性恋人群的影响》中指出多项研究表明:同志终其一生都有相对较高的自杀风险,Diaz的研究表明,男同性恋焦虑和抑郁症状报告率为44%和80%。而互联网由于大家“说话不用负责”,每一个同志都可以是你的情绪垃圾桶,尤其是互联网陌生社交,则更易于负面情绪的传播。而互联网同志社交的使用者中,有很大一部分存在“深柜放飞自我”或是“自称性解放”的现象,这其实是一种“自我嫌恶的外化投射”,因而同志互联网社交更容易出现“撕逼”的现象,很多同志常常难以完善自我性取向认同,就此,2011年王晴锋的研究指出,自我认同良好的同性恋者会更自信、积极、具有强烈的反省意识。而国外的相关文献研究表面,出柜则更能够帮助同志个体提高心理韧性、减少心理疾病以及HIV患病率。不可否认,所谓深柜,其中一大部分的实质是“内化恐同”。互联网社交已经让越来越多的同志感到疲惫。但毫无疑问,互联网社交正在往这两个方向发展:1.注重信息的碎片化、流量变现、更注重社交的泛娱乐化。2.回归线下。数据引用自:https://zhuanlan.zhihu.com/p/40601212线下社交:同志社交的最终归宿1.自动筛选的同志社交门槛在笔者与众多性少数社群工作团队的讨论中,通过实践经验,我们发现:无论是公益活动、公众活动还是自筹众筹活动,这些同志活动本身就对同志个体具有一定的筛选性。通过长期的同志公益、公众、众筹活动,我们发现,积极参与或仅是愿意尝试参与线下真实活动并进行线下真实社交的同志,往往会有更好的自我认同。而这种自我认同常常是多维度的,不仅仅在于对于自我性取向的肯定、认同与接受,还在于对抛却性取向标签之外的自我肯定,例如:生活方式、生活态度、内在与外在、职业规划、理想追求、情感期望等。正由于线下社交活动的真实性,自动过滤了一些例如“照骗者”的互联网欺诈者,同时也一并过滤了较多存在个体问题的同志,例如:明显的线下真实社交障碍者、对自己极度不自信者,社交动机不纯者、心理疾病患者等自认为“见不得人”的人。Mimiaga等的研究表明具有抑郁症状的同志个体更容易发生高危的MSM性行为,而在一个具有主办方监管的正能量线下活动社群的社交场景中,此类个体明显将会有更少的出现率。简单来说,线下活动的真实性,尤其是公众类活动,保证了参与线下真实社交的基友本身便是“走得出来”并有社交需求。从而省去了同志通过互联网社交时去筛选社交对象所花费的大量时间与精力,并且增加了完全的真实性。2.重建同志个体社会支持系统Jones&McCrathy 2010、Outley&Mckenize 2007、Farble 1998等多项研究表明:融入到性少数群体中明显有利于同志个体的身心健康发展,与社群内部的成员互相沟通交流特别有助于个体自尊的正向影响。事实上,只有线下真实事件社交才有助于消弭沟通交流中的各项障碍,减少“互联网语境”所产生的误解。在一个健康正向的同志社群,线下同志社交很少会发生“撕逼”的现象,因为在大多数中国人的心目中,线下的社交礼仪规范要比网络礼仪更为深刻,而碍于网络的面具性,所谓“言论自由”的网络鼓吹,让线下社交时同志个体对自己言行的责任性比网络更高。风潮WindTide,亲友会还是北京同志中心等持续性运作的线下同志工作组织,其可持续的发展性和惠及的同志个体人数已经证明了一个正能量、正向健康的同志社群完全是被需要的。而这些团队所带给每一个同志个体的归属感、家庭感甚至存在感,都是非常可贵的。3.线下社交是最终途径线下社交是大多数同志社交的最终归宿,然而,有许多同志个体,出于各种因素,对于线下社交(无论是一对一还是公众活动)采取了逃避的态度。事实上,我们完全有理由相信,具有主办方监管的线下活动类社交,完全比一对一的私人社交更具有安全性和隐私性。在一个具有主办方监管的线下活动中,社交安全性得到了充分的提升。而主办方的主要活动形式的存在,也避免了一对一社交“无话可说”的尴尬。同时,对于公众活动来说,活动人数的保证也避免了一对一面基时,由于个体目的性太强,而造成“没感觉”就失去社交动力的情况。风潮WindTide所举办的“灯塔-知识经验交换沙龙”、“MrX-交友沙龙”、“海岸线LGBT桌游与TRPG/LARP”等广受好评的LGBT线下活动,不仅让同志个体更好地展现了自我价值,提升了自我认同与群体归属感,也让个体在活动中得到了充分的社交,从而思考与探索发现更健康快乐的同志生活方式。当然,以“寻求恋爱”为目的动机的同志社交是同志线下社交的一部分,但不是全部,诚然,各类线下活动可以满足同志个体找对象的动机,而发现群体内的挚友,交流生活中的所思所想,以共同兴趣开展活动丰富业余生活,更是完善重建同志个体社会支持系统的重要环节,同时也正向作用于同志个体寻求长久稳定对象的目的达成。4.局限与展望方刚所著的《性别心理学》中指出:从性社会学的角度来看,在更重视经济地位的美国,人们通常并不会认为一个富有的同性恋比一个贫穷的异性恋社会地位低。这一事实展现了有趣的社会价值权重。因而在当下的中国,同志线下活动社群的发展也受此影响。我们也许对资本主义抱有疑问,但大多数人依然相信经济基础决定上层建筑。我们很明显地看到,当下的中国,仅在经济高度发达的地区,各类同志线下活动更容易成功地举办,这与这些活动的主办方的资金需求与运作模式密切相关。此外,碍于线下活动的空间限制,线下活动将具有明显的地域特点,因此,除了地域经济水平外,线下活动是否可以成功举办,线下活动的主办方能否可持续发展,也与地域的各类文化差异密切相关,如:地域人群消费观念,地域人群文化娱乐观念,地域同志人群自我认同度等密切相关。如上海骄傲节ShanghaiPride与风潮WindTide的活动能够在上海长年可持续地成功举办,与上海地区本身高度发达的市场经济与更为西化的文化特点、海纳百川的城市精神与区域特点的契约精神不可分割。而政府入资的公益类同志组织,如青艾、北京通知中心的常青,也与其在这些地区性少数群体的人群结构特点密切相关,其投入与产出结果较为满意,才能获得持续的官方资金注入。亲友会的稳定赞助资金获得与自筹款模式,以及以区域中心带动分部的运作模式,也保证了这一民间组织的可持续发展。当然,好的线下社交活动对主办方本身也具有一定的要求:团队文化价值取向,团队工作人员的数量与品质,团队稳定的资金来说及团队的传承模式等。二三线及以下城市举办同志公众类/公益类线下活动的客观难点存在很多,如:地域经济水平所造成的资金限制,地域性的对于LGBT群体的认知与接受度(包括性少数个体的自我认知认同与直人的认知接受),地域消费文化观念等。我们呼吁拥有资金的LGBT友好企业,或是淡蓝、ALO这类资金量较大的同志企业可以思考将资金注入更多可靠的线下活动社群,虽然一线城市可能获利更多,而二三线及以下城市的同志线下社群更为有资金需求,也或许可以开发更大的市场空间,期望在满足经济物质利益(至少是保证这些社群的可持续发展)的同时,解决这些区域的性少数社交的社会问题。而风潮WindTide团队也愿意为合适、正向、具有良好口碑的全国各地的性少数社群(尤其是资金短缺但口碑良好的公益社群),以及具有一定创新性的新生性少数社群提供线下项目的建议支持。你不可能做一个一辈子躲在屏幕后面的同志。同志社交,终将回归线下,走出去,遇见更多的人,才会发生更多真正的故事。 文丨CYEND风潮WindTide-LGBT社交媒体自在丨真实丨温暖丨健康丨靠谱丨灵魂伴侣丨好基友丨LGBT生活方式丨遇见丨新的开始搜索微信公众号:windtideSH 即可关注我们团队编辑于 2018-07-26 18:49男同性恋同性恋同志交往赞同 30228 条评论分享喜欢收藏申请转载文章被以下专栏收录Giscovery同志观察发现更健康快乐的LGBT生
GitHub - josepatino/pyBK: Speaker diarization python system based on binary key speaker modelling
Skip to content
Toggle navigation
Sign in
Product
Actions
Automate any workflow
Packages
Host and manage packages
Security
Find and fix vulnerabilities
Codespaces
Instant dev environments
Copilot
Write better code with AI
Code review
Manage code changes
Issues
Plan and track work
Discussions
Collaborate outside of code
Explore
All features
Documentation
GitHub Skills
Blog
Solutions
For
Enterprise
Teams
Startups
Education
By Solution
CI/CD & Automation
DevOps
DevSecOps
Resources
Learning Pathways
White papers, Ebooks, Webinars
Customer Stories
Partners
Open Source
GitHub Sponsors
Fund open source developers
The ReadME Project
GitHub community articles
Repositories
Topics
Trending
Collections
Pricing
Search or jump to...
Search code, repositories, users, issues, pull requests...
Search
Clear
Search syntax tips
Provide feedback
We read every piece of feedback, and take your input very seriously.
Include my email address so I can be contacted
Cancel
Submit feedback
Saved searches
Use saved searches to filter your results more quickly
Name
Query
To see all available qualifiers, see our documentation.
Cancel
Create saved search
Sign in
Sign up
You signed in with another tab or window. Reload to refresh your session.
You signed out in another tab or window. Reload to refresh your session.
You switched accounts on another tab or window. Reload to refresh your session.
Dismiss alert
josepatino
/
pyBK
Public
Notifications
Fork
10
Star
61
Speaker diarization python system based on binary key speaker modelling
License
MIT license
61
stars
10
forks
Branches
Tags
Activity
Star
Notifications
Code
Issues
2
Pull requests
1
Actions
Projects
0
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Security
Insights
josepatino/pyBK
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
masterBranchesTagsGo to fileCodeFolders and filesNameNameLast commit messageLast commit dateLatest commit History13 Commitsaudioaudio eval-toolseval-tools sadsad uemuem .gitattributes.gitattributes LICENSELICENSE README.mdREADME.md config.iniconfig.ini config_DIHARD.iniconfig_DIHARD.ini diarizationFunctions.pydiarizationFunctions.py main.pymain.py View all filesRepository files navigationREADMEMIT licensepyBK - Speaker diarization python system based on binary key speaker modelling
The system provided performs speaker diarization (speech segmentation and clustering in homogeneous speaker clusters) on a given list of audio files. It is based on the binary key speaker modelling technique. Thanks to the in-session training of a binary key background model (KBM), the system does not require any external training data, providing an easy to run and tune option for speaker diarization tasks.
Description
This implementation is based on that of Delgado, which is also available for MATLAB. Besides the binary key related code, useful functions for a speaker diarization system pipeline are included. Extra details and functionalities were added, following our participation at EURECOM on the Albayzin 2016 Speaker Diarization Evaluation described here, the first DIHARD challenge, detailed in the Interspeech 2018 paper, and the IberSPEECH-RTVE Speaker Diarization Evaluation, explained here.
Installation
This code is written and tested in python 3.6 using conda. It relies on a few common packages to get things done:
numpy
scipy
scikit-learn
librosa for audio processing and feature extraction
py-webrtvad for voice activity detection
If you are using conda:
$ conda create -n pyBK python=3.6
$ source activate pyBK
$ conda install numpy
$ conda install -c conda-forge librosa
$ pip install webrtcvad
$ git clone https://github.com/josepatino/pyBK.git
Example
Five files from the SAIVT-BNEWS database are included in order to test the system (all rights reserved to their respective owners). These comprise audio files in wav format, speech activity detection (SAD) and unpartitioned evaluation map (UEM) files obtained from the references. For a quick run:
$ cd pyBK
$ python main.py
In the case of not finding UEM files, the complete audio content will be considered.
In the case of not finding VAD files, automatic VAD based in py-webrtvad will be applied. Automatic VAD may also be enforced in the config file.
System configuration is provided in the form of an INI configuration file, and comments are provided in the example config.ini file. To use this system on your data create a config file of your own and run:
$ python main.py yourconfig.ini
Finally, a config file following our DIHARD submission is also included. Note that this configuration is meant to be used with IIR-CQT Mel-frequency cepstral coefficients (ICMC) which can be replicated using MATLAB code available here.
Evaluation
The system will have generated a RTTM file which you can evaluate using the NIST md-eval script provided,
$ eval-tools/md-eval-v21.pl -c 0.25 -s out/[experiment_name].rttm -r eval-tools/reference.rttm
which should return a 5.32% diarization error rate (DER) using a standard 0.25s collar. By using the automatic VAD you should get a 10.04% DER. As per the DIHARD config file, when using ICMCs as features, this system returns a DER of 30.69% on the evaluation set, with a 0s collar.
Contact
Please feel free to contact me for any questions related to this code:
Jose Patino: patino[at]eurecom[dot]fr
Citation
If you use pyBK in your research, please use the following citation:
@inproceedings{patino2018,
author = {Patino, Jose and Delgado, H{\'e}ctor and Evans, Nicholas},
title = {{The EURECOM submission to the first DIHARD Challenge}},
booktitle = {{Interspeech 2018, 19th Annual Conference of the International Speech Communication Association}},
year = {2018},
month = {September},
address = {Hyderabad, India},
}
About
Speaker diarization python system based on binary key speaker modelling
Resources
Readme
License
MIT license
Activity
Stars
61
stars
Watchers
9
watching
Forks
10
forks
Report repository
Releases
No releases published
Packages
0
No packages published
Languages
Python
100.0%
Footer
© 2024 GitHub, Inc.
Footer navigation
Terms
Privacy
Security
Status
Docs
Contact
Manage cookies
Do not share my personal information
You can’t perform that action at this time.
PYBK真是的好地方【大叔控吧】_百度贴吧
网页资讯视频图片知道文库贴吧地图采购 进入贴吧全吧搜索吧内搜索搜贴搜人进吧搜标签 日一二三四五六 签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力! 本吧签到人数:0 一键签到可签7级以上的吧50个一键签到 本月漏签0次!0成为超级会员,赠送8张补签卡如何使用?点击日历上漏签日期,即可进行补签。连续签到:天 累计签到:天0超级会员单次开通12个月以上,赠送连续签到卡3张使用连续签到卡 03月07日漏签0天 大叔控吧 关注:394,582贴子:21,339,466
看贴
图片
吧主推荐
视频
玩乐
1
2
3
4
下一页
尾页
50回复贴,共4页
,跳到 页 确定
<返回大叔控吧>0< 加载中... PYBK真是的好地方 只看楼主收藏回复
鬼见愁●
意气叔盛7
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 我可耻的匿了 送TA礼物
1楼2010-08-01 00:31回复
鬼见愁●
意气叔盛7
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 2楼2010-08-01 00:31回复收起回复
熊叔叔的救赎
叔不释手11
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 啥 IP属地:山东3楼2010-08-01 00:31回复收起回复
他陰間的主宰_
叔不释手11
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 自??? IP属地:中国香港4楼2010-08-01 00:32回复收起回复
鬼见愁●
意气叔盛7
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 好多萌叔,这只是其中之一 5楼2010-08-01 00:32回复收起回复
莪丨宝灬
知叔达礼8
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 没匿吧。。。 6楼2010-08-01 00:32回复收起回复
钢砲
同叔无欺12
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 溺了 IP属地:广西7楼2010-08-01 00:33回复收起回复
鬼见愁●
意气叔盛7
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 这不是重点 8楼2010-08-01 00:37回复收起回复
跟着云走
叔不释手11
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 萌叔在哪?2楼那个!? 9楼2010-08-01 00:38回复收起回复
xlxqx
品叔调丝10
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 PYBK是什么? IP属地:四川10楼2010-08-01 00:38回复收起回复
原来注册
知叔达礼8
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 2楼不错 IP属地:江苏11楼2010-08-01 00:41回复收起回复
koen007
误打误撞1
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 PYBK=屁YAN掰开~ 这都不知道~ 12楼2010-08-01 00:41回复收起回复
鬼见愁●
意气叔盛7
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 此叔大家应该都见过 13楼2010-08-01 00:47回复收起回复
鬼见愁●
意气叔盛7
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 回复:12楼好吧,你的解释比原意更好 14楼2010-08-01 00:47回复收起回复
xjqxzalw
叔不释手11
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 回复:10楼朋友别哭。。交友网站。。。。至于12楼的。。。。我沉默。。。。。因为我还很CJ IP属地:北京15楼2010-08-01 02:33回复收起回复 登录百度账号扫二维码下载贴吧客户端下载贴吧APP看高清直播、视频! 贴吧热议榜 1建议建立大学生防沉迷机制2340330 2娃哈哈 农夫山泉1927833 3各校最好老师大赛1376032 4EDG官宣Jiejie出院1203039 5明天放假半天796925 600后整顿婚姻576912 7在哪个吧里黄牌攻击力最强?413540 8星铁虚构叙事PVP榜单316827 9巴黎时装周明星大赏272820 10在食堂被笑话了243808 贴吧页面意见反馈违规贴吧举报反馈通道贴吧违规信息处理公示
1
2
3
4
下一页
尾页
50回复贴,共4页
,跳到 页 确定
<返回大叔控吧 发表回复 发贴请遵守贴吧协议及“七条底线”贴吧投诉 停止浮动 内 容: 使用签名档 查看全部 发 表 保存至快速回贴 退 出 ©2024 Baidu贴吧协议|隐私政策|吧主制度|意见反馈|网络谣言警示
<同性恋交友方式有哪些? - 知乎切换模式写文章登录/注册同性恋交友方式有哪些?星座情感指南很多时候,发现自己性取向与常人不同的他同性恋者一开始并不敢表露自己,害怕被排挤被歧视,所以像同性恋酒吧、同性恋论坛这些交往渠道与方式就成了他们的选择。为你介绍更多同性恋交友方式。 一、同性恋交友方式有哪些? 1、同性恋论坛 2、同性恋交友 3、同性恋酒吧 4、同性恋活动聚会同性恋交友方式有哪些?很多时候,发现自己性取向与常人不同的他同性恋者一开始并不敢表露自己,害怕被排挤被歧视,所以像同性恋酒吧、论坛这些交往渠道与方式就成了他们的选择。为你介绍更多同性恋交友方式。 一、同性恋交友方式有哪些? 1、同性恋论坛 2、同性恋交友 3、同性恋酒吧 4、同性恋活动聚会 二、中国同性恋者较多的城市 上海:上海的GAY密度不是的。但是上海人口太多,所以GAY也超多。每次上街回来同志朋友都会打趣说:“上海的GAY太多,遍地都是,今天又碰到了多少个。”之类的。 北京:作为大帝都,就是八一样!北京人不保守,不刻板,多元而自由。特别是作为中国高校的聚集之地,北京的同性恋者中大学生的比例非常高! 哈尔滨:哈尔滨是东北同志的中心,几乎全是东北人,但是GAY中中年人偏多! 广州:广州的GAY很分散,除了广州,好多来自附近顺德,佛山等地方,人特杂。不过他们基本上会去深圳。广州的同志酒吧很多,但是都不太大。 重庆:重庆有三多,美女多,帅哥多,同性恋也多。不仅如此,重庆还有国内最多,也是最完善的同志关爱组织,有开放的同志酒吧和同志活动场所……一般规模也比较大。不过重庆的男同性恋者普遍素质较高,年轻,外表英俊。 南京:南京不是一个特大城市,GAY却多的不得了!好多是江苏和浙江附近的。同志交友网站上的南京密密麻麻,特别多! 成都:成都GAY的人数不亚于上海!但成都和重庆比较像,很适合同志的产生和生活。成都GAY的特点是:小孩子超多!小编也不造为神马…… 西安:西安被誉为西北和中原的同志基地!唯一特点就是学生多多。 武汉:武汉的同性恋也非常多,华中地区的同志基地,学生特多,同志酒吧较少,武汉没有一个像样的同志酒吧,所以基本都属于游荡型~ 青岛:毕竟青岛是个包容性比较强的城市,所以这里GAY算是最多最杂的了!!!啥人都有,简直堪称经典。从民工到大富翁,小偷到学者,男娼到名人都有,反正谁也不认识谁。青岛的GAY圈人多又乱,质量也参差不齐!咳咳,所以……注意身体啊! 二、中国同性恋者较多的城市 上海:上海的GAY密度不是的。但是上海人口太多,所以GAY也超多。每次上街回来同志朋友都会打趣说:“上海的GAY太多,遍地都是,今天又碰到了多少个。”之类的。 北京:作为大帝都,就是八一样!北京人不保守,不刻板,多元而自由。特别是作为中国高校的聚集之地,北京的同性恋者中大学生的比例非常高! 哈尔滨:哈尔滨是东北同志的中心,几乎全是东北人,但是GAY中中年人偏多! 广州:广州的GAY很分散,除了广州,好多来自附近顺德,佛山等地方,人特杂。不过他们基本上会去深圳。广州的同志酒吧很多,但是都不太大。 重庆:重庆有三多,美女多,帅哥多,同性恋也多。不仅如此,重庆还有国内最多,也是最完善的同志关爱组织,有开放的同志酒吧和同志活动场所……一般规模也比较大。不过重庆的男同性恋者普遍素质较高,年轻,外表英俊。 南京:南京不是一个特大城市,GAY却多的不得了!好多是江苏和浙江附近的。同志交友网站上的南京密密麻麻,特别多! 成都:成都GAY的人数不亚于上海!但成都和重庆比较像,很适合同志的产生和生活。成都GAY的特点是:小孩子超多!小编也不造为神马…… 西安:西安被誉为西北和中原的同志基地!唯一特点就是学生多多。 武汉:武汉的同性恋也非常多,华中地区的同志基地,学生特多,同志酒吧较少,武汉没有一个像样的同志酒吧,所以基本都属于游荡型~ 青岛:毕竟青岛是个包容性比较强的城市,所以这里GAY算是最多最杂的了!!!啥人都有,简直堪称经典。从民工到大富翁,小偷到学者,男娼到名人都有,反正谁也不认识谁。青岛的GAY圈人多又乱,质量也参差不齐!咳咳,所以……注意身体啊!发布于 2021-04-30 11:59男同性恋同性恋同志交往赞同 655 条评论分享喜欢收藏申请
[2105.00385] pyBKT: An Accessible Python Library of Bayesian Knowledge Tracing Models
Skip to main content
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
> cs > arXiv:2105.00385
Help | Advanced Search
All fields
Title
Author
Abstract
Comments
Journal reference
ACM classification
MSC classification
Report number
arXiv identifier
DOI
ORCID
arXiv author ID
Help pages
Full text
Search
open search
GO
open navigation menu
quick links
Login
Help Pages
About
Computer Science > Mathematical Software
arXiv:2105.00385 (cs)
[Submitted on 2 May 2021 (v1), last revised 29 May 2021 (this version, v2)]
Title:pyBKT: An Accessible Python Library of Bayesian Knowledge Tracing Models
Authors:Anirudhan Badrinath, Frederic Wang, Zachary Pardos Download a PDF of the paper titled pyBKT: An Accessible Python Library of Bayesian Knowledge Tracing Models, by Anirudhan Badrinath and 2 other authors
Download PDF
Abstract:Bayesian Knowledge Tracing, a model used for cognitive mastery estimation, has been a hallmark of adaptive learning research and an integral component of deployed intelligent tutoring systems (ITS). In this paper, we provide a brief history of knowledge tracing model research and introduce pyBKT, an accessible and computationally efficient library of model extensions from the literature. The library provides data generation, fitting, prediction, and cross-validation routines, as well as a simple to use data helper interface to ingest typical tutor log dataset formats. We evaluate the runtime with various dataset sizes and compare to past implementations. Additionally, we conduct sanity checks of the model using experiments with simulated data to evaluate the accuracy of its EM parameter learning and use real-world data to validate its predictions, comparing pyBKT's supported model variants with results from the papers in which they were originally introduced. The library is open source and open license for the purpose of making knowledge tracing more accessible to communities of research and practice and to facilitate progress in the field through easier replication of past approaches.
Comments:
Accepted to the 2021 Conference on Educational Data Mining (EDM '21)
Subjects:
Mathematical Software (cs.MS); Artificial Intelligence (cs.AI); Computers and Society (cs.CY); Machine Learning (cs.LG)
Cite as:
arXiv:2105.00385 [cs.MS]
(or
arXiv:2105.00385v2 [cs.MS] for this version)
https://doi.org/10.48550/arXiv.2105.00385
Focus to learn more
arXiv-issued DOI via DataCite
Submission history From: Zachary Pardos [view email] [v1]
Sun, 2 May 2021 03:08:53 UTC (1,373 KB)
[v2]
Sat, 29 May 2021 04:20:30 UTC (1,374 KB)
Full-text links:
Access Paper:
Download a PDF of the paper titled pyBKT: An Accessible Python Library of Bayesian Knowledge Tracing Models, by Anirudhan Badrinath and 2 other authorsDownload PDFTeX SourceOther Formats
view license
Current browse context: cs.MS
< prev
|
next >
new
|
recent
|
2105
Change to browse by:
cs
cs.AI
cs.CY
cs.LG
References & Citations
NASA ADSGoogle Scholar
Semantic Scholar
DBLP - CS Bibliography
listing | bibtex
Zachary A. Pardos
a
export BibTeX citation
Loading...
BibTeX formatted citation
×
loading...
Data provided by:
Bookmark
Bibliographic Tools
Bibliographic and Citation Tools
Bibliographic Explorer Toggle
Bibliographic Explorer (What is the Explorer?)
Litmaps Toggle
Litmaps (What is Litmaps?)
scite.ai Toggle
scite Smart Citations (What are Smart Citations?)
Code, Data, Media
Code, Data and Media Associated with this Article
Links to Code Toggle
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub Toggle
DagsHub (What is DagsHub?)
GotitPub Toggle
Gotit.pub (What is GotitPub?)
Links to Code Toggle
Papers with Code (What is Papers with Code?)
ScienceCast Toggle
ScienceCast (What is ScienceCast?)
Demos
Demos
Replicate Toggle
Replicate (What is Replicate?)
Spaces Toggle
Hugging Face Spaces (What is Spaces?)
Spaces Toggle
TXYZ.AI (What is TXYZ.AI?)
Related Papers
Recommenders and Search Tools
Link to Influence Flower
Influence Flower (What are Influence Flowers?)
Connected Papers Toggle
Connected Papers (What is Connected Papers?)
Core recommender toggle
CORE Recommender (What is CORE?)
Author
Venue
Institution
Topic
About arXivLabs
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.
Which authors of this paper are endorsers? |
Disable MathJax (What is MathJax?)
About
Help
contact arXivClick here to contact arXiv
Contact
subscribe to arXiv mailingsClick here to subscribe
Subscribe
Copyright
Privacy Policy
Web Accessibility Assistance
arXiv Operational Status
Get status notifications via
or slack
yload":{"allShortcutsEnabled":false,"fileTree":{"":{"items":[{"name":"audio","path":"audio","contentType":"directory"},{"name":"eval-tools","path":"eval-tools","contentType":"directory"},{"name":"sad","path":"sad","contentType":"directory"},{"name":"uem","path":"uem","contentType":"directory"},{"name":".gitattributes","path":".gitattributes","contentType":"file"},{"name":"LICENSE","path":"LICENSE","contentType":"file"},{"name":"README.md","path":"README.md","contentType":"file"},{"name":"config.ini","path":"config.ini","contentType":"file"},{"name":"config_DIHARD.ini","path":"config_DIHARD.ini","contentType":"file"},{"name":"diarizationFunctions.py","path":"diarizationFunctions.py","contentType":"file"},{"name":"main.py","path":"main.py","contentType":"file"}],"totalCount":11}},"fileTreeProcessingTime":4.872665,"foldersToFetch":[],"repo":{"id":165877893,"defaultBranch":"master","name":"pyBK","ownerLogin":"josepatino","currentUserCanPush":false,"isFork":false,"isEmpty":false,"createdAt":"2019-01-15T15:44:04.000Z","ownerAvatar":"https://avatars.githubusercontent.com/u/10758194?v=4","public":true,"private":false,"isOrgOwned":false},"symbolsExpanded":false,"treeExpanded":true,"refInfo":{"name":"master","listCacheKey":"v0:1547567046.0","canEdit":false,"refType":"branch","currentOid":"09c34a597036615415348eb0a6f249d0b146072e"},"path":"main.py","currentUser":null,"blob":{"rawLines":["# AUTHORS","# Jose PATINO, EURECOM, Sophia-Antipolis, France, 2019","# http://www.eurecom.fr/en/people/patino-jose","# Contact: patino[at]eurecom[dot]fr, josempatinovillar[at]gmail[dot]com","","import os, sys, glob","import configparser","from diarizationFunctions import *","import numpy as np","","def runDiarization(showName,config): "," print('showName\\t\\t',showName)"," print('Extracting features') "," "," if config.getint('GENERAL','performFeatureExtraction'):"," allData=extractFeatures(config['PATH']['audio']+showName+config['EXTENSION']['audio'],config.getfloat('FEATURES','framelength'),config.getfloat('FEATURES','frameshift'),config.getint('FEATURES','nfilters'),config.getint('FEATURES','ncoeff')) "," else:"," allData=getFeatures(config['PATH']['features']+showName+config['EXTENSION']['features'])"," nFeatures = allData.shape[0] "," print('Initial number of features\\t',nFeatures) "," "," if os.path.isfile(config['PATH']['UEM']+showName+config['EXTENSION']['UEM']):"," maskUEM = readUEMfile(config['PATH']['UEM'],showName,config['EXTENSION']['UEM'],nFeatures,config.getfloat('FEATURES','frameshift'))"," else:"," print('UEM file does not exist. The complete audio content is considered.')"," maskUEM = np.ones([1,nFeatures]) "," "," if os.path.isfile(config['PATH']['SAD']+showName+config['EXTENSION']['SAD']) and not(config.getint('GENERAL','performVAD')):"," maskSAD = readSADfile(config['PATH']['SAD'],showName,config['EXTENSION']['SAD'],nFeatures,config.getfloat('FEATURES','frameshift'),config['GENERAL']['SADformat']) "," else:"," print('SAD file does not exist or automatic VAD is enabled in the config. VAD is applied and saved at %s.\\n'%(config['PATH']['SAD']+showName+'.lab'))"," maskSAD = getSADfile(config,showName,nFeatures)"," mask = np.logical_and(maskUEM,maskSAD) "," mask = mask[0][0:nFeatures]"," nSpeechFeatures=np.sum(mask)"," speechMapping = np.zeros(nFeatures)"," #you need to start the mapping from 1 and end it in the actual number of features independently of the indexing style"," #so that we don't lose features on the way"," speechMapping[np.nonzero(mask)] = np.arange(1,nSpeechFeatures+1)"," data=allData[np.where(mask==1)]"," del allData "," segmentTable=getSegmentTable(mask,speechMapping,config.getint('SEGMENT','length'),config.getint('SEGMENT','increment'),config.getint('SEGMENT','rate'))"," numberOfSegments=np.size(segmentTable,0)"," print('Number of speech features\\t',nSpeechFeatures)"," #create the KBM"," print('Training the KBM... ')"," #set the window rate in order to obtain \"minimumNumberOfInitialGaussians\" gaussians"," if np.floor((nSpeechFeatures-config.getint('KBM','windowLength'))/config.getint('KBM','minimumNumberOfInitialGaussians')) < config.getint('KBM','maximumKBMWindowRate'):"," windowRate = int(np.floor((np.size(data,0)-config.getint('KBM','windowLength'))/config.getint('KBM','minimumNumberOfInitialGaussians')))"," else:"," windowRate = int(config.getint('KBM','maximumKBMWindowRate')) "," poolSize = np.floor((nSpeechFeatures-config.getint('KBM','windowLength'))/windowRate)"," if config.getint('KBM','useRelativeKBMsize'):"," kbmSize = int(np.floor(poolSize*config.getfloat('KBM','relKBMsize')))"," else:"," kbmSize = int(config.getint('KBM','kbmSize')) "," print('Training pool of',int(poolSize),'gaussians with a rate of',int(windowRate),'frames') "," kbm, gmPool = trainKBM(data,config.getint('KBM','windowLength'),windowRate,kbmSize ) "," print('Selected',kbmSize,'gaussians from the pool') "," Vg = getVgMatrix(data,gmPool,kbm,config.getint('BINARY_KEY','topGaussiansPerFrame')) "," print('Computing binary keys for all segments... ')"," segmentBKTable, segmentCVTable = getSegmentBKs(segmentTable, kbmSize, Vg, config.getfloat('BINARY_KEY','bitsPerSegmentFactor'), speechMapping) "," print('Performing initial clustering... ')"," initialClustering = np.digitize(np.arange(numberOfSegments),np.arange(0,numberOfSegments,numberOfSegments/config.getint('CLUSTERING','N_init')))"," print('done')"," print('Performing agglomerative clustering... ') "," if config.getint('CLUSTERING','linkage'):"," finalClusteringTable, k = performClusteringLinkage(segmentBKTable, segmentCVTable, config.getint('CLUSTERING','N_init'), config['CLUSTERING']['linkageCriterion'], config['CLUSTERING']['metric'])"," else:"," finalClusteringTable, k = performClustering(speechMapping, segmentTable, segmentBKTable, segmentCVTable, Vg, config.getfloat('BINARY_KEY','bitsPerSegmentFactor'), kbmSize, config.getint('CLUSTERING','N_init'), initialClustering, config['CLUSTERING']['metric']) "," print('Selecting best clustering...')"," if config['CLUSTERING_SELECTION']['bestClusteringCriterion'] == 'elbow':"," bestClusteringID = getBestClustering(config['CLUSTERING_SELECTION']['metric_clusteringSelection'], segmentBKTable, segmentCVTable, finalClusteringTable, k, config.getint('CLUSTERING_SELECTION','maxNrSpeakers'))"," elif config['CLUSTERING_SELECTION']['bestClusteringCriterion'] == 'spectral':"," bestClusteringID = getSpectralClustering(config['CLUSTERING_SELECTION']['metric_clusteringSelection'],finalClusteringTable,config.getint('CLUSTERING','N_init'),segmentBKTable,segmentCVTable,k,config.getint('CLUSTERING_SELECTION','sigma'),config.getint('CLUSTERING_SELECTION','percentile'),config.getint('CLUSTERING_SELECTION','maxNrSpeakers'))+1 "," print('Best clustering:\\t',bestClusteringID.astype(int))"," print('Number of clusters:\\t',np.size(np.unique(finalClusteringTable[:,bestClusteringID.astype(int)-1]),0)) "," if config.getint('RESEGMENTATION','resegmentation') and np.size(np.unique(finalClusteringTable[:,bestClusteringID.astype(int)-1]),0)>1:"," print('Performing GMM-ML resegmentation...')"," finalClusteringTableResegmentation,finalSegmentTable = performResegmentation(data,speechMapping, mask,finalClusteringTable[:,bestClusteringID.astype(int)-1],segmentTable,config.getint('RESEGMENTATION','modelSize'),config.getint('RESEGMENTATION','nbIter'),config.getint('RESEGMENTATION','smoothWin'),nSpeechFeatures)"," print('done')"," getSegmentationFile(config['OUTPUT']['format'],config.getfloat('FEATURES','frameshift'),finalSegmentTable, np.squeeze(finalClusteringTableResegmentation), showName, config['EXPERIMENT']['name'], config['PATH']['output'], config['EXTENSION']['output'])"," else:"," getSegmentationFile(config['OUTPUT']['format'],config.getfloat('FEATURES','frameshift'),segmentTable, finalClusteringTable[:,bestClusteringID.astype(int)-1], showName, config['EXPERIMENT']['name'], config['PATH']['output'], config['EXTENSION']['output']) "," "," if config.getint('OUTPUT','returnAllPartialSolutions'):"," if not os.path.isdir(config['PATH']['output']):"," os.mkdir(config['PATH']['output'])"," outputPathInd = config['PATH']['output']+ config['EXPERIMENT']['name'] + '/' + showName + '/'"," if not os.path.isdir(config['PATH']['output'] + config['EXPERIMENT']['name']):"," os.mkdir(config['PATH']['output'] + config['EXPERIMENT']['name'])"," if not os.path.isdir(outputPathInd): "," os.mkdir(outputPathInd)"," for i in np.arange(k):"," getSegmentationFile(config['OUTPUT']['format'],config.getfloat('FEATURES','frameshift'), segmentTable, finalClusteringTable[:,i], showName, showName+'_'+str(np.size(np.unique(finalClusteringTable[:,i]),0))+'_spk', outputPathInd, config['EXTENSION']['output']) "," "," print('\\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')"," ","if __name__ == \"__main__\": "," # If a config file in INI format is passed by argument line then it's used. "," # For INI config formatting please refer to https://docs.python.org/3/library/configparser.html"," if len(sys.argv) >= 2:"," configFile = sys.argv[1]"," else:"," configFile = 'config.ini' "," config = configparser.ConfigParser()"," config.read(configFile)"," "," if config.getint('GENERAL','performFeatureExtraction'):"," # Audio files are searched at the corresponding folder"," showNameList = sorted(glob.glob(config['PATH']['audio']+'*'+config['EXTENSION']['audio']))"," else:"," # Feature files are searched if feature extraction is disabled:"," showNameList = sorted(glob.glob(config['PATH']['features']+'*'+config['EXTENSION']['features']))"," "," # If the output file already exists from a previous call it is deleted"," if os.path.isfile(config['PATH']['output']+config['EXPERIMENT']['name']+config['EXTENSION']['output']):"," os.remove(config['PATH']['output']+config['EXPERIMENT']['name']+config['EXTENSION']['output'])"," "," # Output folder is created"," if not os.path.isdir(config['PATH']['output']):"," os.mkdir(config['PATH']['output'])",""," # Files are diarized one by one"," for idx,showName in enumerate(showNameList):"," print('\\nProcessing file',idx+1,'/',len(showNameList))"," runDiarization(os.path.splitext(os.path.basename(showName))[0],config)"],"stylingDirectives":[[{"start":0,"end":9,"cssClass":"pl-c"}],[{"start":0,"end":54,"cssClass":"pl-c"}],[{"start":0,"end":45,"cssClass":"pl-c"}],[{"start":0,"end":71,"cssClass":"pl-c"}],[],[{"start":0,"end":6,"cssClass":"pl-k"},{"start":7,"end":9,"cssClass":"pl-s1"},{"start":11,"end":14,"cssClass":"pl-s1"},{"start":16,"end":20,"cssClass":"pl-s1"}],[{"start":0,"end":6,"cssClass":"pl-k"},{"start":7,"end":19,"cssClass":"pl-s1"}],[{"start":0,"end":4,"cssClass":"pl-k"},{"start":5,"end":25,"cssClass":"pl-s1"},{"start":26,"end":32,"cssClass":"pl-k"},{"start":33,"end":34,"cssClass":"pl-c1"}],[{"start":0,"end":6,"cssClass":"pl-k"},{"start":7,"end":12,"cssClass":"pl-s1"},{"start":13,"end":15,"cssClass":"pl-k"},{"start":16,"end":18,"cssClass":"pl-s1"}],[],[{"start":0,"end":3,"cssClass":"pl-k"},{"start":4,"end":18,"cssClass":"pl-en"},{"start":19,"end":27,"cssClass":"pl-s1"},{"start":28,"end":34,"cssClass":"pl-s1"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":24,"cssClass":"pl-s"},{"start":19,"end":21,"cssClass":"pl-cce"},{"start":21,"end":23,"cssClass":"pl-cce"},{"start":25,"end":33,"cssClass":"pl-s1"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":31,"cssClass":"pl-s"}],[],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":13,"cssClass":"pl-s1"},{"start":14,"end":20,"cssClass":"pl-en"},{"start":21,"end":30,"cssClass":"pl-s"},{"start":31,"end":57,"cssClass":"pl-s"}],[{"start":8,"end":15,"cssClass":"pl-s1"},{"start":15,"end":16,"cssClass":"pl-c1"},{"start":16,"end":31,"cssClass":"pl-en"},{"start":32,"end":38,"cssClass":"pl-s1"},{"start":39,"end":45,"cssClass":"pl-s"},{"start":47,"end":54,"cssClass":"pl-s"},{"start":55,"end":56,"cssClass":"pl-c1"},{"start":56,"end":64,"cssClass":"pl-s1"},{"start":64,"end":65,"cssClass":"pl-c1"},{"start":65,"end":71,"cssClass":"pl-s1"},{"start":72,"end":83,"cssClass":"pl-s"},{"start":85,"end":92,"cssClass":"pl-s"},{"start":94,"end":100,"cssClass":"pl-s1"},{"start":101,"end":109,"cssClass":"pl-en"},{"start":110,"end":120,"cssClass":"pl-s"},{"start":121,"end":134,"cssClass":"pl-s"},{"start":136,"end":142,"cssClass":"pl-s1"},{"start":143,"end":151,"cssClass":"pl-en"},{"start":152,"end":162,"cssClass":"pl-s"},{"start":163,"end":175,"cssClass":"pl-s"},{"start":177,"end":183,"cssClass":"pl-s1"},{"start":184,"end":190,"cssClass":"pl-en"},{"start":191,"end":201,"cssClass":"pl-s"},{"start":202,"end":212,"cssClass":"pl-s"},{"start":214,"end":220,"cssClass":"pl-s1"},{"start":221,"end":227,"cssClass":"pl-en"},{"start":228,"end":238,"cssClass":"pl-s"},{"start":239,"end":247,"cssClass":"pl-s"}],[{"start":4,"end":8,"cssClass":"pl-k"}],[{"start":8,"end":15,"cssClass":"pl-s1"},{"start":15,"end":16,"cssClass":"pl-c1"},{"start":16,"end":27,"cssClass":"pl-en"},{"start":28,"end":34,"cssClass":"pl-s1"},{"start":35,"end":41,"cssClass":"pl-s"},{"start":43,"end":53,"cssClass":"pl-s"},{"start":54,"end":55,"cssClass":"pl-c1"},{"start":55,"end":63,"cssClass":"pl-s1"},{"start":63,"end":64,"cssClass":"pl-c1"},{"start":64,"end":70,"cssClass":"pl-s1"},{"start":71,"end":82,"cssClass":"pl-s"},{"start":84,"end":94,"cssClass":"pl-s"}],[{"start":4,"end":13,"cssClass":"pl-s1"},{"start":14,"end":15,"cssClass":"pl-c1"},{"start":16,"end":23,"cssClass":"pl-s1"},{"start":24,"end":29,"cssClass":"pl-s1"},{"start":30,"end":31,"cssClass":"pl-c1"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":40,"cssClass":"pl-s"},{"start":37,"end":39,"cssClass":"pl-cce"},{"start":41,"end":50,"cssClass":"pl-s1"}],[],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":9,"cssClass":"pl-s1"},{"start":10,"end":14,"cssClass":"pl-s1"},{"start":15,"end":21,"cssClass":"pl-en"},{"start":22,"end":28,"cssClass":"pl-s1"},{"start":29,"end":35,"cssClass":"pl-s"},{"start":37,"end":42,"cssClass":"pl-s"},{"start":43,"end":44,"cssClass":"pl-c1"},{"start":44,"end":52,"cssClass":"pl-s1"},{"start":52,"end":53,"cssClass":"pl-c1"},{"start":53,"end":59,"cssClass":"pl-s1"},{"start":60,"end":71,"cssClass":"pl-s"},{"start":73,"end":78,"cssClass":"pl-s"}],[{"start":8,"end":15,"cssClass":"pl-s1"},{"start":16,"end":17,"cssClass":"pl-c1"},{"start":18,"end":29,"cssClass":"pl-en"},{"start":30,"end":36,"cssClass":"pl-s1"},{"start":37,"end":43,"cssClass":"pl-s"},{"start":45,"end":50,"cssClass":"pl-s"},{"start":52,"end":60,"cssClass":"pl-s1"},{"start":61,"end":67,"cssClass":"pl-s1"},{"start":68,"end":79,"cssClass":"pl-s"},{"start":81,"end":86,"cssClass":"pl-s"},{"start":88,"end":97,"cssClass":"pl-s1"},{"start":98,"end":104,"cssClass":"pl-s1"},{"start":105,"end":113,"cssClass":"pl-en"},{"start":114,"end":124,"cssClass":"pl-s"},{"start":125,"end":137,"cssClass":"pl-s"}],[{"start":4,"end":8,"cssClass":"pl-k"}],[{"start":8,"end":13,"cssClass":"pl-en"},{"start":14,"end":82,"cssClass":"pl-s"}],[{"start":8,"end":15,"cssClass":"pl-s1"},{"start":16,"end":17,"cssClass":"pl-c1"},{"start":18,"end":20,"cssClass":"pl-s1"},{"start":21,"end":25,"cssClass":"pl-en"},{"start":27,"end":28,"cssClass":"pl-c1"},{"start":29,"end":38,"cssClass":"pl-s1"}],[],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":9,"cssClass":"pl-s1"},{"start":10,"end":14,"cssClass":"pl-s1"},{"start":15,"end":21,"cssClass":"pl-en"},{"start":22,"end":28,"cssClass":"pl-s1"},{"start":29,"end":35,"cssClass":"pl-s"},{"start":37,"end":42,"cssClass":"pl-s"},{"start":43,"end":44,"cssClass":"pl-c1"},{"start":44,"end":52,"cssClass":"pl-s1"},{"start":52,"end":53,"cssClass":"pl-c1"},{"start":53,"end":59,"cssClass":"pl-s1"},{"start":60,"end":71,"cssClass":"pl-s"},{"start":73,"end":78,"cssClass":"pl-s"},{"start":81,"end":84,"cssClass":"pl-c1"},{"start":85,"end":88,"cssClass":"pl-c1"},{"start":89,"end":95,"cssClass":"pl-s1"},{"start":96,"end":102,"cssClass":"pl-en"},{"start":103,"end":112,"cssClass":"pl-s"},{"start":113,"end":125,"cssClass":"pl-s"}],[{"start":8,"end":15,"cssClass":"pl-s1"},{"start":16,"end":17,"cssClass":"pl-c1"},{"start":18,"end":29,"cssClass":"pl-en"},{"start":30,"end":36,"cssClass":"pl-s1"},{"start":37,"end":43,"cssClass":"pl-s"},{"start":45,"end":50,"cssClass":"pl-s"},{"start":52,"end":60,"cssClass":"pl-s1"},{"start":61,"end":67,"cssClass":"pl-s1"},{"start":68,"end":79,"cssClass":"pl-s"},{"start":81,"end":86,"cssClass":"pl-s"},{"start":88,"end":97,"cssClass":"pl-s1"},{"start":98,"end":104,"cssClass":"pl-s1"},{"start":105,"end":113,"cssClass":"pl-en"},{"start":114,"end":124,"cssClass":"pl-s"},{"start":125,"end":137,"cssClass":"pl-s"},{"start":139,"end":145,"cssClass":"pl-s1"},{"start":146,"end":155,"cssClass":"pl-s"},{"start":157,"end":168,"cssClass":"pl-s"}],[{"start":4,"end":8,"cssClass":"pl-k"}],[{"start":8,"end":13,"cssClass":"pl-en"},{"start":14,"end":116,"cssClass":"pl-s"},{"start":113,"end":115,"cssClass":"pl-cce"},{"start":116,"end":117,"cssClass":"pl-c1"},{"start":118,"end":124,"cssClass":"pl-s1"},{"start":125,"end":131,"cssClass":"pl-s"},{"start":133,"end":138,"cssClass":"pl-s"},{"start":139,"end":140,"cssClass":"pl-c1"},{"start":140,"end":148,"cssClass":"pl-s1"},{"start":148,"end":149,"cssClass":"pl-c1"},{"start":149,"end":155,"cssClass":"pl-s"}],[{"start":8,"end":15,"cssClass":"pl-s1"},{"start":16,"end":17,"cssClass":"pl-c1"},{"start":18,"end":28,"cssClass":"pl-en"},{"start":29,"end":35,"cssClass":"pl-s1"},{"start":36,"end":44,"cssClass":"pl-s1"},{"start":45,"end":54,"cssClass":"pl-s1"}],[{"start":4,"end":8,"cssClass":"pl-s1"},{"start":9,"end":10,"cssClass":"pl-c1"},{"start":11,"end":13,"cssClass":"pl-s1"},{"start":14,"end":25,"cssClass":"pl-en"},{"start":26,"end":33,"cssClass":"pl-s1"},{"start":34,"end":41,"cssClass":"pl-s1"}],[{"start":4,"end":8,"cssClass":"pl-s1"},{"start":9,"end":10,"cssClass":"pl-c1"},{"start":11,"end":15,"cssClass":"pl-s1"},{"start":16,"end":17,"cssClass":"pl-c1"},{"start":19,"end":20,"cssClass":"pl-c1"},{"start":21,"end":30,"cssClass":"pl-s1"}],[{"start":4,"end":19,"cssClass":"pl-s1"},{"start":19,"end":20,"cssClass":"pl-c1"},{"start":20,"end":22,"cssClass":"pl-s1"},{"start":23,"end":26,"cssClass":"pl-en"},{"start":27,"end":31,"cssClass":"pl-s1"}],[{"start":4,"end":17,"cssClass":"pl-s1"},{"start":18,"end":19,"cssClass":"pl-c1"},{"start":20,"end":22,"cssClass":"pl-s1"},{"start":23,"end":28,"cssClass":"pl-en"},{"start":29,"end":38,"cssClass":"pl-s1"}],[{"start":4,"end":121,"cssClass":"pl-c"}],[{"start":4,"end":46,"cssClass":"pl-c"}],[{"start":4,"end":17,"cssClass":"pl-s1"},{"start":18,"end":20,"cssClass":"pl-s1"},{"start":21,"end":28,"cssClass":"pl-en"},{"start":29,"end":33,"cssClass":"pl-s1"},{"start":36,"end":37,"cssClass":"pl-c1"},{"start":38,"end":40,"cssClass":"pl-s1"},{"start":41,"end":47,"cssClass":"pl-en"},{"start":48,"end":49,"cssClass":"pl-c1"},{"start":50,"end":65,"cssClass":"pl-s1"},{"start":65,"end":66,"cssClass":"pl-c1"},{"start":66,"end":67,"cssClass":"pl-c1"}],[{"start":4,"end":8,"cssClass":"pl-s1"},{"start":8,"end":9,"cssClass":"pl-c1"},{"start":9,"end":16,"cssClass":"pl-s1"},{"start":17,"end":19,"cssClass":"pl-s1"},{"start":20,"end":25,"cssClass":"pl-en"},{"start":26,"end":30,"cssClass":"pl-s1"},{"start":30,"end":32,"cssClass":"pl-c1"},{"start":32,"end":33,"cssClass":"pl-c1"}],[{"start":4,"end":7,"cssClass":"pl-k"},{"start":8,"end":15,"cssClass":"pl-s1"}],[{"start":4,"end":16,"cssClass":"pl-s1"},{"start":16,"end":17,"cssClass":"pl-c1"},{"start":17,"end":32,"cssClass":"pl-en"},{"start":33,"end":37,"cssClass":"pl-s1"},{"start":38,"end":51,"cssClass":"pl-s1"},{"start":52,"end":58,"cssClass":"pl-s1"},{"start":59,"end":65,"cssClass":"pl-en"},{"start":66,"end":75,"cssClass":"pl-s"},{"start":76,"end":84,"cssClass":"pl-s"},{"start":86,"end":92,"cssClass":"pl-s1"},{"start":93,"end":99,"cssClass":"pl-en"},{"start":100,"end":109,"cssClass":"pl-s"},{"start":110,"end":121,"cssClass":"pl-s"},{"start":123,"end":129,"cssClass":"pl-s1"},{"start":130,"end":136,"cssClass":"pl-en"},{"start":137,"end":146,"cssClass":"pl-s"},{"start":147,"end":153,"cssClass":"pl-s"}],[{"start":4,"end":20,"cssClass":"pl-s1"},{"start":20,"end":21,"cssClass":"pl-c1"},{"start":21,"end":23,"cssClass":"pl-s1"},{"start":24,"end":28,"cssClass":"pl-en"},{"start":29,"end":41,"cssClass":"pl-s1"},{"start":42,"end":43,"cssClass":"pl-c1"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":39,"cssClass":"pl-s"},{"start":36,"end":38,"cssClass":"pl-cce"},{"start":40,"end":55,"cssClass":"pl-s1"}],[{"start":4,"end":19,"cssClass":"pl-c"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":32,"cssClass":"pl-s"}],[{"start":4,"end":87,"cssClass":"pl-c"}],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":9,"cssClass":"pl-s1"},{"start":10,"end":15,"cssClass":"pl-en"},{"start":17,"end":32,"cssClass":"pl-s1"},{"start":32,"end":33,"cssClass":"pl-c1"},{"start":33,"end":39,"cssClass":"pl-s1"},{"start":40,"end":46,"cssClass":"pl-en"},{"start":47,"end":52,"cssClass":"pl-s"},{"start":53,"end":67,"cssClass":"pl-s"},{"start":69,"end":70,"cssClass":"pl-c1"},{"start":70,"end":76,"cssClass":"pl-s1"},{"start":77,"end":83,"cssClass":"pl-en"},{"start":84,"end":89,"cssClass":"pl-s"},{"start":90,"end":123,"cssClass":"pl-s"},{"start":126,"end":127,"cssClass":"pl-c1"},{"start":128,"end":134,"cssClass":"pl-s1"},{"start":135,"end":141,"cssClass":"pl-en"},{"start":142,"end":147,"cssClass":"pl-s"},{"start":148,"end":170,"cssClass":"pl-s"}],[{"start":8,"end":18,"cssClass":"pl-s1"},{"start":19,"end":20,"cssClass":"pl-c1"},{"start":21,"end":24,"cssClass":"pl-en"},{"start":25,"end":27,"cssClass":"pl-s1"},{"start":28,"end":33,"cssClass":"pl-en"},{"start":35,"end":37,"cssClass":"pl-s1"},{"start":38,"end":42,"cssClass":"pl-en"},{"start":43,"end":47,"cssClass":"pl-s1"},{"start":48,"end":49,"cssClass":"pl-c1"},{"start":50,"end":51,"cssClass":"pl-c1"},{"start":51,"end":57,"cssClass":"pl-s1"},{"start":58,"end":64,"cssClass":"pl-en"},{"start":65,"end":70,"cssClass":"pl-s"},{"start":71,"end":85,"cssClass":"pl-s"},{"start":87,"end":88,"cssClass":"pl-c1"},{"start":88,"end":94,"cssClass":"pl-s1"},{"start":95,"end":101,"cssClass":"pl-en"},{"start":102,"end":107,"cssClass":"pl-s"},{"start":108,"end":141,"cssClass":"pl-s"}],[{"start":4,"end":8,"cssClass":"pl-k"}],[{"start":8,"end":18,"cssClass":"pl-s1"},{"start":19,"end":20,"cssClass":"pl-c1"},{"start":21,"end":24,"cssClass":"pl-en"},{"start":25,"end":31,"cssClass":"pl-s1"},{"start":32,"end":38,"cssClass":"pl-en"},{"start":39,"end":44,"cssClass":"pl-s"},{"start":45,"end":67,"cssClass":"pl-s"}],[{"start":4,"end":12,"cssClass":"pl-s1"},{"start":13,"end":14,"cssClass":"pl-c1"},{"start":15,"end":17,"cssClass":"pl-s1"},{"start":18,"end":23,"cssClass":"pl-en"},{"start":25,"end":40,"cssClass":"pl-s1"},{"start":40,"end":41,"cssClass":"pl-c1"},{"start":41,"end":47,"cssClass":"pl-s1"},{"start":48,"end":54,"cssClass":"pl-en"},{"start":55,"end":60,"cssClass":"pl-s"},{"start":61,"end":75,"cssClass":"pl-s"},{"start":77,"end":78,"cssClass":"pl-c1"},{"start":78,"end":88,"cssClass":"pl-s1"}],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":8,"end":14,"cssClass":"pl-s1"},{"start":15,"end":21,"cssClass":"pl-en"},{"start":22,"end":27,"cssClass":"pl-s"},{"start":28,"end":48,"cssClass":"pl-s"}],[{"start":8,"end":15,"cssClass":"pl-s1"},{"start":16,"end":17,"cssClass":"pl-c1"},{"start":18,"end":21,"cssClass":"pl-en"},{"start":22,"end":24,"cssClass":"pl-s1"},{"start":25,"end":30,"cssClass":"pl-en"},{"start":31,"end":39,"cssClass":"pl-s1"},{"start":39,"end":40,"cssClass":"pl-c1"},{"start":40,"end":46,"cssClass":"pl-s1"},{"start":47,"end":55,"cssClass":"pl-en"},{"start":56,"end":61,"cssClass":"pl-s"},{"start":62,"end":74,"cssClass":"pl-s"}],[{"start":4,"end":8,"cssClass":"pl-k"}],[{"start":8,"end":15,"cssClass":"pl-s1"},{"start":16,"end":17,"cssClass":"pl-c1"},{"start":18,"end":21,"cssClass":"pl-en"},{"start":22,"end":28,"cssClass":"pl-s1"},{"start":29,"end":35,"cssClass":"pl-en"},{"start":36,"end":41,"cssClass":"pl-s"},{"start":42,"end":51,"cssClass":"pl-s"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":28,"cssClass":"pl-s"},{"start":29,"end":32,"cssClass":"pl-en"},{"start":33,"end":41,"cssClass":"pl-s1"},{"start":43,"end":69,"cssClass":"pl-s"},{"start":70,"end":73,"cssClass":"pl-en"},{"start":74,"end":84,"cssClass":"pl-s1"},{"start":86,"end":94,"cssClass":"pl-s"}],[{"start":4,"end":7,"cssClass":"pl-s1"},{"start":9,"end":15,"cssClass":"pl-s1"},{"start":16,"end":17,"cssClass":"pl-c1"},{"start":18,"end":26,"cssClass":"pl-en"},{"start":27,"end":31,"cssClass":"pl-s1"},{"start":32,"end":38,"cssClass":"pl-s1"},{"start":39,"end":45,"cssClass":"pl-en"},{"start":46,"end":51,"cssClass":"pl-s"},{"start":52,"end":66,"cssClass":"pl-s"},{"start":68,"end":78,"cssClass":"pl-s1"},{"start":79,"end":86,"cssClass":"pl-s1"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":20,"cssClass":"pl-s"},{"start":21,"end":28,"cssClass":"pl-s1"},{"start":29,"end":54,"cssClass":"pl-s"}],[{"start":4,"end":6,"cssClass":"pl-v"},{"start":7,"end":8,"cssClass":"pl-c1"},{"start":9,"end":20,"cssClass":"pl-en"},{"start":21,"end":25,"cssClass":"pl-s1"},{"start":26,"end":32,"cssClass":"pl-s1"},{"start":33,"end":36,"cssClass":"pl-s1"},{"start":37,"end":43,"cssClass":"pl-s1"},{"start":44,"end":50,"cssClass":"pl-en"},{"start":51,"end":63,"cssClass":"pl-s"},{"start":64,"end":86,"cssClass":"pl-s"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":54,"cssClass":"pl-s"}],[{"start":4,"end":18,"cssClass":"pl-s1"},{"start":20,"end":34,"cssClass":"pl-s1"},{"start":35,"end":36,"cssClass":"pl-c1"},{"start":37,"end":50,"cssClass":"pl-en"},{"start":51,"end":63,"cssClass":"pl-s1"},{"start":65,"end":72,"cssClass":"pl-s1"},{"start":74,"end":76,"cssClass":"pl-v"},{"start":78,"end":84,"cssClass":"pl-s1"},{"start":85,"end":93,"cssClass":"pl-en"},{"start":94,"end":106,"cssClass":"pl-s"},{"start":107,"end":129,"cssClass":"pl-s"},{"start":132,"end":145,"cssClass":"pl-s1"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":45,"cssClass":"pl-s"}],[{"start":4,"end":21,"cssClass":"pl-s1"},{"start":22,"end":23,"cssClass":"pl-c1"},{"start":24,"end":26,"cssClass":"pl-s1"},{"start":27,"end":35,"cssClass":"pl-en"},{"start":36,"end":38,"cssClass":"pl-s1"},{"start":39,"end":45,"cssClass":"pl-en"},{"start":46,"end":62,"cssClass":"pl-s1"},{"start":64,"end":66,"cssClass":"pl-s1"},{"start":67,"end":73,"cssClass":"pl-en"},{"start":74,"end":75,"cssClass":"pl-c1"},{"start":76,"end":92,"cssClass":"pl-s1"},{"start":93,"end":109,"cssClass":"pl-s1"},{"start":109,"end":110,"cssClass":"pl-c1"},{"start":110,"end":116,"cssClass":"pl-s1"},{"start":117,"end":123,"cssClass":"pl-en"},{"start":124,"end":136,"cssClass":"pl-s"},{"start":137,"end":145,"cssClass":"pl-s"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":16,"cssClass":"pl-s"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":51,"cssClass":"pl-s"}],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":13,"cssClass":"pl-s1"},{"start":14,"end":20,"cssClass":"pl-en"},{"start":21,"end":33,"cssClass":"pl-s"},{"start":34,"end":43,"cssClass":"pl-s"}],[{"start":8,"end":28,"cssClass":"pl-s1"},{"start":30,"end":31,"cssClass":"pl-s1"},{"start":32,"end":33,"cssClass":"pl-c1"},{"start":34,"end":58,"cssClass":"pl-en"},{"start":59,"end":73,"cssClass":"pl-s1"},{"start":75,"end":89,"cssClass":"pl-s1"},{"start":91,"end":97,"cssClass":"pl-s1"},{"start":98,"end":104,"cssClass":"pl-en"},{"start":105,"end":117,"cssClass":"pl-s"},{"start":118,"end":126,"cssClass":"pl-s"},{"start":129,"end":135,"cssClass":"pl-s1"},{"start":136,"end":148,"cssClass":"pl-s"},{"start":150,"end":168,"cssClass":"pl-s"},{"start":171,"end":177,"cssClass":"pl-s1"},{"start":178,"end":190,"cssClass":"pl-s"},{"start":192,"end":200,"cssClass":"pl-s"}],[{"start":4,"end":8,"cssClass":"pl-k"}],[{"start":8,"end":28,"cssClass":"pl-s1"},{"start":30,"end":31,"cssClass":"pl-s1"},{"start":32,"end":33,"cssClass":"pl-c1"},{"start":34,"end":51,"cssClass":"pl-en"},{"start":52,"end":65,"cssClass":"pl-s1"},{"start":67,"end":79,"cssClass":"pl-s1"},{"start":81,"end":95,"cssClass":"pl-s1"},{"start":97,"end":111,"cssClass":"pl-s1"},{"start":113,"end":115,"cssClass":"pl-v"},{"start":117,"end":123,"cssClass":"pl-s1"},{"start":124,"end":132,"cssClass":"pl-en"},{"start":133,"end":145,"cssClass":"pl-s"},{"start":146,"end":168,"cssClass":"pl-s"},{"start":171,"end":178,"cssClass":"pl-s1"},{"start":180,"end":186,"cssClass":"pl-s1"},{"start":187,"end":193,"cssClass":"pl-en"},{"start":194,"end":206,"cssClass":"pl-s"},{"start":207,"end":215,"cssClass":"pl-s"},{"start":218,"end":235,"cssClass":"pl-s1"},{"start":237,"end":243,"cssClass":"pl-s1"},{"start":244,"end":256,"cssClass":"pl-s"},{"start":258,"end":266,"cssClass":"pl-s"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":40,"cssClass":"pl-s"}],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":13,"cssClass":"pl-s1"},{"start":14,"end":36,"cssClass":"pl-s"},{"start":38,"end":63,"cssClass":"pl-s"},{"start":65,"end":67,"cssClass":"pl-c1"},{"start":68,"end":75,"cssClass":"pl-s"}],[{"start":8,"end":24,"cssClass":"pl-s1"},{"start":25,"end":26,"cssClass":"pl-c1"},{"start":27,"end":44,"cssClass":"pl-en"},{"start":45,"end":51,"cssClass":"pl-s1"},{"start":52,"end":74,"cssClass":"pl-s"},{"start":76,"end":104,"cssClass":"pl-s"},{"start":107,"end":121,"cssClass":"pl-s1"},{"start":123,"end":137,"cssClass":"pl-s1"},{"start":139,"end":159,"cssClass":"pl-s1"},{"start":161,"end":162,"cssClass":"pl-s1"},{"start":164,"end":170,"cssClass":"pl-s1"},{"start":171,"end":177,"cssClass":"pl-en"},{"start":178,"end":200,"cssClass":"pl-s"},{"start":201,"end":216,"cssClass":"pl-s"}],[{"start":4,"end":8,"cssClass":"pl-k"},{"start":9,"end":15,"cssClass":"pl-s1"},{"start":16,"end":38,"cssClass":"pl-s"},{"start":40,"end":65,"cssClass":"pl-s"},{"start":67,"end":69,"cssClass":"pl-c1"},{"start":70,"end":80,"cssClass":"pl-s"}],[{"start":8,"end":24,"cssClass":"pl-s1"},{"start":25,"end":26,"cssClass":"pl-c1"},{"start":27,"end":48,"cssClass":"pl-en"},{"start":49,"end":55,"cssClass":"pl-s1"},{"start":56,"end":78,"cssClass":"pl-s"},{"start":80,"end":108,"cssClass":"pl-s"},{"start":110,"end":130,"cssClass":"pl-s1"},{"start":131,"end":137,"cssClass":"pl-s1"},{"start":138,"end":144,"cssClass":"pl-en"},{"start":145,"end":157,"cssClass":"pl-s"},{"start":158,"end":166,"cssClass":"pl-s"},{"start":168,"end":182,"cssClass":"pl-s1"},{"start":183,"end":197,"cssClass":"pl-s1"},{"start":198,"end":199,"cssClass":"pl-s1"},{"start":200,"end":206,"cssClass":"pl-s1"},{"start":207,"end":213,"cssClass":"pl-en"},{"start":214,"end":236,"cssClass":"pl-s"},{"start":237,"end":244,"cssClass":"pl-s"},{"start":246,"end":252,"cssClass":"pl-s1"},{"start":253,"end":259,"cssClass":"pl-en"},{"start":260,"end":282,"cssClass":"pl-s"},{"start":283,"end":295,"cssClass":"pl-s"},{"start":297,"end":303,"cssClass":"pl-s1"},{"start":304,"end":310,"cssClass":"pl-en"},{"start":311,"end":333,"cssClass":"pl-s"},{"start":334,"end":349,"cssClass":"pl-s"},{"start":351,"end":352,"cssClass":"pl-c1"},{"start":352,"end":353,"cssClass":"pl-c1"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":30,"cssClass":"pl-s"},{"start":27,"end":29,"cssClass":"pl-cce"},{"start":31,"end":47,"cssClass":"pl-s1"},{"start":48,"end":54,"cssClass":"pl-en"},{"start":55,"end":58,"cssClass":"pl-s1"}],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":33,"cssClass":"pl-s"},{"start":30,"end":32,"cssClass":"pl-cce"},{"start":34,"end":36,"cssClass":"pl-s1"},{"start":37,"end":41,"cssClass":"pl-en"},{"start":42,"end":44,"cssClass":"pl-s1"},{"start":45,"end":51,"cssClass":"pl-en"},{"start":52,"end":72,"cssClass":"pl-s1"},{"start":75,"end":91,"cssClass":"pl-s1"},{"start":92,"end":98,"cssClass":"pl-en"},{"start":99,"end":102,"cssClass":"pl-s1"},{"start":103,"end":104,"cssClass":"pl-c1"},{"start":104,"end":105,"cssClass":"pl-c1"},{"start":108,"end":109,"cssClass":"pl-c1"}],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":13,"cssClass":"pl-s1"},{"start":14,"end":20,"cssClass":"pl-en"},{"start":21,"end":37,"cssClass":"pl-s"},{"start":38,"end":54,"cssClass":"pl-s"},{"start":56,"end":59,"cssClass":"pl-c1"},{"start":60,"end":62,"cssClass":"pl-s1"},{"start":63,"end":67,"cssClass":"pl-en"},{"start":68,"end":70,"cssClass":"pl-s1"},{"start":71,"end":77,"cssClass":"pl-en"},{"start":78,"end":98,"cssClass":"pl-s1"},{"start":101,"end":117,"cssClass":"pl-s1"},{"start":118,"end":124,"cssClass":"pl-en"},{"start":125,"end":128,"cssClass":"pl-s1"},{"start":129,"end":130,"cssClass":"pl-c1"},{"start":130,"end":131,"cssClass":"pl-c1"},{"start":134,"end":135,"cssClass":"pl-c1"},{"start":136,"end":137,"cssClass":"pl-c1"},{"start":137,"end":138,"cssClass":"pl-c1"}],[{"start":8,"end":13,"cssClass":"pl-en"},{"start":14,"end":51,"cssClass":"pl-s"}],[{"start":8,"end":42,"cssClass":"pl-s1"},{"start":43,"end":60,"cssClass":"pl-s1"},{"start":61,"end":62,"cssClass":"pl-c1"},{"start":63,"end":84,"cssClass":"pl-en"},{"start":85,"end":89,"cssClass":"pl-s1"},{"start":90,"end":103,"cssClass":"pl-s1"},{"start":105,"end":109,"cssClass":"pl-s1"},{"start":110,"end":130,"cssClass":"pl-s1"},{"start":133,"end":149,"cssClass":"pl-s1"},{"start":150,"end":156,"cssClass":"pl-en"},{"start":157,"end":160,"cssClass":"pl-s1"},{"start":161,"end":162,"cssClass":"pl-c1"},{"start":162,"end":163,"cssClass":"pl-c1"},{"start":165,"end":177,"cssClass":"pl-s1"},{"start":178,"end":184,"cssClass":"pl-s1"},{"start":185,"end":191,"cssClass":"pl-en"},{"start":192,"end":208,"cssClass":"pl-s"},{"start":209,"end":220,"cssClass":"pl-s"},{"start":222,"end":228,"cssClass":"pl-s1"},{"start":229,"end":235,"cssClass":"pl-en"},{"start":236,"end":252,"cssClass":"pl-s"},{"start":253,"end":261,"cssClass":"pl-s"},{"start":263,"end":269,"cssClass":"pl-s1"},{"start":270,"end":276,"cssClass":"pl-en"},{"start":277,"end":293,"cssClass":"pl-s"},{"start":294,"end":305,"cssClass":"pl-s"},{"start":307,"end":322,"cssClass":"pl-s1"}],[{"start":8,"end":13,"cssClass":"pl-en"},{"start":14,"end":20,"cssClass":"pl-s"}],[{"start":8,"end":27,"cssClass":"pl-en"},{"start":28,"end":34,"cssClass":"pl-s1"},{"start":35,"end":43,"cssClass":"pl-s"},{"start":45,"end":53,"cssClass":"pl-s"},{"start":55,"end":61,"cssClass":"pl-s1"},{"start":62,"end":70,"cssClass":"pl-en"},{"start":71,"end":81,"cssClass":"pl-s"},{"start":82,"end":94,"cssClass":"pl-s"},{"start":96,"end":113,"cssClass":"pl-s1"},{"start":115,"end":117,"cssClass":"pl-s1"},{"start":118,"end":125,"cssClass":"pl-en"},{"start":126,"end":160,"cssClass":"pl-s1"},{"start":163,"end":171,"cssClass":"pl-s1"},{"start":173,"end":179,"cssClass":"pl-s1"},{"start":180,"end":192,"cssClass":"pl-s"},{"start":194,"end":200,"cssClass":"pl-s"},{"start":203,"end":209,"cssClass":"pl-s1"},{"start":210,"end":216,"cssClass":"pl-s"},{"start":218,"end":226,"cssClass":"pl-s"},{"start":229,"end":235,"cssClass":"pl-s1"},{"start":236,"end":247,"cssClass":"pl-s"},{"start":249,"end":257,"cssClass":"pl-s"}],[{"start":4,"end":8,"cssClass":"pl-k"}],[{"start":8,"end":27,"cssClass":"pl-en"},{"start":28,"end":34,"cssClass":"pl-s1"},{"start":35,"end":43,"cssClass":"pl-s"},{"start":45,"end":53,"cssClass":"pl-s"},{"start":55,"end":61,"cssClass":"pl-s1"},{"start":62,"end":70,"cssClass":"pl-en"},{"start":71,"end":81,"cssClass":"pl-s"},{"start":82,"end":94,"cssClass":"pl-s"},{"start":96,"end":108,"cssClass":"pl-s1"},{"start":110,"end":130,"cssClass":"pl-s1"},{"start":133,"end":149,"cssClass":"pl-s1"},{"start":150,"end":156,"cssClass":"pl-en"},{"start":157,"end":160,"cssClass":"pl-s1"},{"start":161,"end":162,"cssClass":"pl-c1"},{"start":162,"end":163,"cssClass":"pl-c1"},{"start":166,"end":174,"cssClass":"pl-s1"},{"start":176,"end":182,"cssClass":"pl-s1"},{"start":183,"end":195,"cssClass":"pl-s"},{"start":197,"end":203,"cssClass":"pl-s"},{"start":206,"end":212,"cssClass":"pl-s1"},{"start":213,"end":219,"cssClass":"pl-s"},{"start":221,"end":229,"cssClass":"pl-s"},{"start":232,"end":238,"cssClass":"pl-s1"},{"start":239,"end":250,"cssClass":"pl-s"},{"start":252,"end":260,"cssClass":"pl-s"}],[],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":13,"cssClass":"pl-s1"},{"start":14,"end":20,"cssClass":"pl-en"},{"start":21,"end":29,"cssClass":"pl-s"},{"start":30,"end":57,"cssClass":"pl-s"}],[{"start":8,"end":10,"cssClass":"pl-k"},{"start":11,"end":14,"cssClass":"pl-c1"},{"start":15,"end":17,"cssClass":"pl-s1"},{"start":18,"end":22,"cssClass":"pl-s1"},{"start":23,"end":28,"cssClass":"pl-en"},{"start":29,"end":35,"cssClass":"pl-s1"},{"start":36,"end":42,"cssClass":"pl-s"},{"start":44,"end":52,"cssClass":"pl-s"}],[{"start":12,"end":14,"cssClass":"pl-s1"},{"start":15,"end":20,"cssClass":"pl-en"},{"start":21,"end":27,"cssClass":"pl-s1"},{"start":28,"end":34,"cssClass":"pl-s"},{"start":36,"end":44,"cssClass":"pl-s"}],[{"start":8,"end":21,"cssClass":"pl-s1"},{"start":22,"end":23,"cssClass":"pl-c1"},{"start":24,"end":30,"cssClass":"pl-s1"},{"start":31,"end":37,"cssClass":"pl-s"},{"start":39,"end":47,"cssClass":"pl-s"},{"start":48,"end":49,"cssClass":"pl-c1"},{"start":50,"end":56,"cssClass":"pl-s1"},{"start":57,"end":69,"cssClass":"pl-s"},{"start":71,"end":77,"cssClass":"pl-s"},{"start":79,"end":80,"cssClass":"pl-c1"},{"start":81,"end":84,"cssClass":"pl-s"},{"start":85,"end":86,"cssClass":"pl-c1"},{"start":87,"end":95,"cssClass":"pl-s1"},{"start":96,"end":97,"cssClass":"pl-c1"},{"start":98,"end":101,"cssClass":"pl-s"}],[{"start":8,"end":10,"cssClass":"pl-k"},{"start":11,"end":14,"cssClass":"pl-c1"},{"start":15,"end":17,"cssClass":"pl-s1"},{"start":18,"end":22,"cssClass":"pl-s1"},{"start":23,"end":28,"cssClass":"pl-en"},{"start":29,"end":35,"cssClass":"pl-s1"},{"start":36,"end":42,"cssClass":"pl-s"},{"start":44,"end":52,"cssClass":"pl-s"},{"start":54,"end":55,"cssClass":"pl-c1"},{"start":56,"end":62,"cssClass":"pl-s1"},{"start":63,"end":75,"cssClass":"pl-s"},{"start":77,"end":83,"cssClass":"pl-s"}],[{"start":12,"end":14,"cssClass":"pl-s1"},{"start":15,"end":20,"cssClass":"pl-en"},{"start":21,"end":27,"cssClass":"pl-s1"},{"start":28,"end":34,"cssClass":"pl-s"},{"start":36,"end":44,"cssClass":"pl-s"},{"start":46,"end":47,"cssClass":"pl-c1"},{"start":48,"end":54,"cssClass":"pl-s1"},{"start":55,"end":67,"cssClass":"pl-s"},{"start":69,"end":75,"cssClass":"pl-s"}],[{"start":8,"end":10,"cssClass":"pl-k"},{"start":11,"end":14,"cssClass":"pl-c1"},{"start":15,"end":17,"cssClass":"pl-s1"},{"start":18,"end":22,"cssClass":"pl-s1"},{"start":23,"end":28,"cssClass":"pl-en"},{"start":29,"end":42,"cssClass":"pl-s1"}],[{"start":12,"end":14,"cssClass":"pl-s1"},{"start":15,"end":20,"cssClass":"pl-en"},{"start":21,"end":34,"cssClass":"pl-s1"}],[{"start":8,"end":11,"cssClass":"pl-k"},{"start":12,"end":13,"cssClass":"pl-s1"},{"start":14,"end":16,"cssClass":"pl-c1"},{"start":17,"end":19,"cssClass":"pl-s1"},{"start":20,"end":26,"cssClass":"pl-en"},{"start":27,"end":28,"cssClass":"pl-s1"}],[{"start":12,"end":31,"cssClass":"pl-en"},{"start":32,"end":38,"cssClass":"pl-s1"},{"start":39,"end":47,"cssClass":"pl-s"},{"start":49,"end":57,"cssClass":"pl-s"},{"start":59,"end":65,"cssClass":"pl-s1"},{"start":66,"end":74,"cssClass":"pl-en"},{"start":75,"end":85,"cssClass":"pl-s"},{"start":86,"end":98,"cssClass":"pl-s"},{"start":101,"end":113,"cssClass":"pl-s1"},{"start":115,"end":135,"cssClass":"pl-s1"},{"start":138,"end":139,"cssClass":"pl-s1"},{"start":142,"end":150,"cssClass":"pl-s1"},{"start":152,"end":160,"cssClass":"pl-s1"},{"start":160,"end":161,"cssClass":"pl-c1"},{"start":161,"end":164,"cssClass":"pl-s"},{"start":164,"end":165,"cssClass":"pl-c1"},{"start":165,"end":168,"cssClass":"pl-en"},{"start":169,"end":171,"cssClass":"pl-s1"},{"start":172,"end":176,"cssClass":"pl-en"},{"start":177,"end":179,"cssClass":"pl-s1"},{"start":180,"end":186,"cssClass":"pl-en"},{"start":187,"end":207,"cssClass":"pl-s1"},{"start":210,"end":211,"cssClass":"pl-s1"},{"start":214,"end":215,"cssClass":"pl-c1"},{"start":217,"end":218,"cssClass":"pl-c1"},{"start":218,"end":224,"cssClass":"pl-s"},{"start":226,"end":239,"cssClass":"pl-s1"},{"start":241,"end":247,"cssClass":"pl-s1"},{"start":248,"end":259,"cssClass":"pl-s"},{"start":261,"end":269,"cssClass":"pl-s"}],[],[{"start":4,"end":9,"cssClass":"pl-en"},{"start":10,"end":76,"cssClass":"pl-s"},{"start":11,"end":13,"cssClass":"pl-cce"}],[],[{"start":0,"end":2,"cssClass":"pl-k"},{"start":3,"end":11,"cssClass":"pl-s1"},{"start":12,"end":14,"cssClass":"pl-c1"},{"start":15,"end":25,"cssClass":"pl-s"}],[{"start":4,"end":80,"cssClass":"pl-c"}],[{"start":4,"end":99,"cssClass":"pl-c"}],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":10,"cssClass":"pl-en"},{"start":11,"end":14,"cssClass":"pl-s1"},{"start":15,"end":19,"cssClass":"pl-s1"},{"start":21,"end":23,"cssClass":"pl-c1"},{"start":24,"end":25,"cssClass":"pl-c1"}],[{"start":8,"end":18,"cssClass":"pl-s1"},{"start":19,"end":20,"cssClass":"pl-c1"},{"start":21,"end":24,"cssClass":"pl-s1"},{"start":25,"end":29,"cssClass":"pl-s1"},{"start":30,"end":31,"cssClass":"pl-c1"}],[{"start":4,"end":8,"cssClass":"pl-k"}],[{"start":8,"end":18,"cssClass":"pl-s1"},{"start":19,"end":20,"cssClass":"pl-c1"},{"start":21,"end":33,"cssClass":"pl-s"}],[{"start":4,"end":10,"cssClass":"pl-s1"},{"start":11,"end":12,"cssClass":"pl-c1"},{"start":13,"end":25,"cssClass":"pl-s1"},{"start":26,"end":38,"cssClass":"pl-v"}],[{"start":4,"end":10,"cssClass":"pl-s1"},{"start":11,"end":15,"cssClass":"pl-en"},{"start":16,"end":26,"cssClass":"pl-s1"}],[],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":13,"cssClass":"pl-s1"},{"start":14,"end":20,"cssClass":"pl-en"},{"start":21,"end":30,"cssClass":"pl-s"},{"start":31,"end":57,"cssClass":"pl-s"}],[{"start":8,"end":62,"cssClass":"pl-c"}],[{"start":8,"end":20,"cssClass":"pl-s1"},{"start":21,"end":22,"cssClass":"pl-c1"},{"start":23,"end":29,"cssClass":"pl-en"},{"start":30,"end":34,"cssClass":"pl-s1"},{"start":35,"end":39,"cssClass":"pl-en"},{"start":40,"end":46,"cssClass":"pl-s1"},{"start":47,"end":53,"cssClass":"pl-s"},{"start":55,"end":62,"cssClass":"pl-s"},{"start":63,"end":64,"cssClass":"pl-c1"},{"start":64,"end":67,"cssClass":"pl-s"},{"start":67,"end":68,"cssClass":"pl-c1"},{"start":68,"end":74,"cssClass":"pl-s1"},{"start":75,"end":86,"cssClass":"pl-s"},{"start":88,"end":95,"cssClass":"pl-s"}],[{"start":4,"end":8,"cssClass":"pl-k"}],[{"start":8,"end":71,"cssClass":"pl-c"}],[{"start":8,"end":20,"cssClass":"pl-s1"},{"start":21,"end":22,"cssClass":"pl-c1"},{"start":23,"end":29,"cssClass":"pl-en"},{"start":30,"end":34,"cssClass":"pl-s1"},{"start":35,"end":39,"cssClass":"pl-en"},{"start":40,"end":46,"cssClass":"pl-s1"},{"start":47,"end":53,"cssClass":"pl-s"},{"start":55,"end":65,"cssClass":"pl-s"},{"start":66,"end":67,"cssClass":"pl-c1"},{"start":67,"end":70,"cssClass":"pl-s"},{"start":70,"end":71,"cssClass":"pl-c1"},{"start":71,"end":77,"cssClass":"pl-s1"},{"start":78,"end":89,"cssClass":"pl-s"},{"start":91,"end":101,"cssClass":"pl-s"}],[],[{"start":4,"end":74,"cssClass":"pl-c"}],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":9,"cssClass":"pl-s1"},{"start":10,"end":14,"cssClass":"pl-s1"},{"start":15,"end":21,"cssClass":"pl-en"},{"start":22,"end":28,"cssClass":"pl-s1"},{"start":29,"end":35,"cssClass":"pl-s"},{"start":37,"end":45,"cssClass":"pl-s"},{"start":46,"end":47,"cssClass":"pl-c1"},{"start":47,"end":53,"cssClass":"pl-s1"},{"start":54,"end":66,"cssClass":"pl-s"},{"start":68,"end":74,"cssClass":"pl-s"},{"start":75,"end":76,"cssClass":"pl-c1"},{"start":76,"end":82,"cssClass":"pl-s1"},{"start":83,"end":94,"cssClass":"pl-s"},{"start":96,"end":104,"cssClass":"pl-s"}],[{"start":8,"end":10,"cssClass":"pl-s1"},{"start":11,"end":17,"cssClass":"pl-en"},{"start":18,"end":24,"cssClass":"pl-s1"},{"start":25,"end":31,"cssClass":"pl-s"},{"start":33,"end":41,"cssClass":"pl-s"},{"start":42,"end":43,"cssClass":"pl-c1"},{"start":43,"end":49,"cssClass":"pl-s1"},{"start":50,"end":62,"cssClass":"pl-s"},{"start":64,"end":70,"cssClass":"pl-s"},{"start":71,"end":72,"cssClass":"pl-c1"},{"start":72,"end":78,"cssClass":"pl-s1"},{"start":79,"end":90,"cssClass":"pl-s"},{"start":92,"end":100,"cssClass":"pl-s"}],[],[{"start":4,"end":30,"cssClass":"pl-c"}],[{"start":4,"end":6,"cssClass":"pl-k"},{"start":7,"end":10,"cssClass":"pl-c1"},{"start":11,"end":13,"cssClass":"pl-s1"},{"start":14,"end":18,"cssClass":"pl-s1"},{"start":19,"end":24,"cssClass":"pl-en"},{"start":25,"end":31,"cssClass":"pl-s1"},{"start":32,"end":38,"cssClass":"pl-s"},{"start":40,"end":48,"cssClass":"pl-s"}],[{"start":8,"end":10,"cssClass":"pl-s1"},{"start":11,"end":16,"cssClass":"pl-en"},{"start":17,"end":23,"cssClass":"pl-s1"},{"start":24,"end":30,"cssClass":"pl-s"},{"start":32,"end":40,"cssClass":"pl-s"}],[],[{"start":4,"end":35,"cssClass":"pl-c"}],[{"start":4,"end":7,"cssClass":"pl-k"},{"start":8,"end":11,"cssClass":"pl-s1"},{"start":12,"end":20,"cssClass":"pl-s1"},{"start":21,"end":23,"cssClass":"pl-c1"},{"start":24,"end":33,"cssClass":"pl-en"},{"start":34,"end":46,"cssClass":"pl-s1"}],[{"start":8,"end":13,"cssClass":"pl-en"},{"start":14,"end":33,"cssClass":"pl-s"},{"start":15,"end":17,"cssClass":"pl-cce"},{"start":34,"end":37,"cssClass":"pl-s1"},{"start":37,"end":38,"cssClass":"pl-c1"},{"start":38,"end":39,"cssClass":"pl-c1"},{"start":40,"end":43,"cssClass":"pl-s"},{"start":44,"end":47,"cssClass":"pl-en"},{"start":48,"end":60,"cssClass":"pl-s1"}],[{"start":8,"end":22,"cssClass":"pl-en"},{"start":23,"end":25,"cssClass":"pl-s1"},{"start":26,"end":30,"cssClass":"pl-s1"},{"start":31,"end":39,"cssClass":"pl-en"},{"start":40,"end":42,"cssClass":"pl-s1"},{"start":43,"end":47,"cssClass":"pl-s1"},{"start":48,"end":56,"cssClass":"pl-en"},{"start":57,"end":65,"cssClass":"pl-s1"},{"start":68,"end":69,"cssClass":"pl-c1"},{"start":71,"end":77,"cssClass":"pl-s1"}]],"csv":null,"csvError":null,"dependabotInfo":{"showConfigurationBanner":false,"configFilePath":null,"networkDependabotPath":"/josepatino/pyBK/network/updates","dismissConfigurationNoticePath":"/settings/dismiss-notice/dependabot_configuration_notice","configurationNoticeDismissed":null},"displayName":"main.py","displayUrl":"https://github.com/josepatino/pyBK/blob/master/main.py?raw=true","headerInfo":{"blobSize":"8.94 KB","deleteTooltip":"You must be signed in to make or propose changes","editTooltip":"You must be signed in to make or propose changes","ghDesktopPath":"https://desktop.github.com","isGitLfs":false,"onBranch":true,"shortPath":"96fdc19","siteNavLoginPath":"/login?return_to=https%3A%2F%2Fgithub.com%2Fjosepatino%2FpyBK%2Fblob%2Fmaster%2Fmain.py","isCSV":false,"isRichtext":false,"toc":null,"lineInfo":{"truncatedLoc":"127","truncatedSloc":"115"},"mode":"file"},"image":false,"isCodeownersFile":null,"isPlain":false,"isValidLegacyIssueTemplate":false,"issueTemplate":null,"discussionTemplate":null,"language":"Python","languageID":303,"large":false,"planSupportInfo":{"repoIsFork":null,"repoOwnedByCurrentUser":null,"requestFullPath":"/josepatino/pyBK/blob/master/main.py","showFreeOrgGatedFeatureMessage":null,"showPlanSupportBanner":null,"upgradeDataAttributes":null,"upgradePath":null},"publishBannersInfo":{"dismissActionNoticePath":"/settings/dismiss-notice/publish_action_from_dockerfile","releasePath":"/josepatino/pyBK/releases/new?marketplace=true","showPublishActionBanner":false},"rawBlobUrl":"https://github.com/josepatino/pyBK/raw/master/main.py","renderImageOrRaw":false,"richText":null,"renderedFileInfo":null,"shortPath":null,"symbolsEnabled":true,"tabSize":8,"topBannersInfo":{"overridingGlobalFundingFile":false,"globalPreferredFundingPath":null,"showInvalidCitationWarning":false,"citationHelpUrl":"https://docs.github.com/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files","actionsOnboardingTip":null},"truncated":false,"viewable":true,"workflowRedirectUrl":null,"symbols":{"timed_out":false,"not_analyzed":false,"symbols":[{"name":"runDiarization","kind":"function","ident_start":284,"ident_end":298,"extent_start":280,"extent_end":7683,"fully_qualified_name":"runDiarization","ident_utf16":{"start":{"line_number":10,"utf16_col":4},"end":{"line_number":10,"utf16_col":18}},"extent_utf16":{"start":{"line_number":10,"utf16_col":0},"end":{"line_number":96,"utf16_col":77}}}]}},"copilotInfo":null,"copilotAccessAllowed":false,"csrf_tokens":{"/josepatino/pyBK/branches":{"post":"Reqbicrrz9i7PRNle5J2sQnhl4vTEzC6vZxZiPRAPYYZsby_tbbX8xCuQtSLQtrICC8xz8iW5XfWexm5Bj70XQ"},"/repos/preferences":{"post":"sBO9KGgGOjMrsBoX6PPfyHTCO23pOrC2pG4ZFg5xtDsLTE59_kn61WllSX_h2wICR4yV0Z6zZJKDDl2DvpwJkQ"}}},"title":"pyBK/main.py at master · josepatino/pyB
GitHub - bugbakery/pydiar: simple to use, pretrained/training-less models for speaker diarization
Skip to content
Toggle navigation
Sign in
Product
Actions
Automate any workflow
Packages
Host and manage packages
Security
Find and fix vulnerabilities
Codespaces
Instant dev environments
Copilot
Write better code with AI
Code review
Manage code changes
Issues
Plan and track work
Discussions
Collaborate outside of code
Explore
All features
Documentation
GitHub Skills
Blog
Solutions
For
Enterprise
Teams
Startups
Education
By Solution
CI/CD & Automation
DevOps
DevSecOps
Resources
Learning Pathways
White papers, Ebooks, Webinars
Customer Stories
Partners
Open Source
GitHub Sponsors
Fund open source developers
The ReadME Project
GitHub community articles
Repositories
Topics
Trending
Collections
Pricing
Search or jump to...
Search code, repositories, users, issues, pull requests...
Search
Clear
Search syntax tips
Provide feedback
We read every piece of feedback, and take your input very seriously.
Include my email address so I can be contacted
Cancel
Submit feedback
Saved searches
Use saved searches to filter your results more quickly
Name
Query
To see all available qualifiers, see our documentation.
Cancel
Create saved search
Sign in
Sign up
You signed in with another tab or window. Reload to refresh your session.
You signed out in another tab or window. Reload to refresh your session.
You switched accounts on another tab or window. Reload to refresh your session.
Dismiss alert
bugbakery
/
pydiar
Public
Notifications
Fork
7
Star
20
simple to use, pretrained/training-less models for speaker diarization
License
View license
20
stars
7
forks
Branches
Tags
Activity
Star
Notifications
Code
Issues
2
Pull requests
1
Actions
Projects
0
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Security
Insights
bugbakery/pydiar
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
mainBranchesTagsGo to fileCodeFolders and filesNameNameLast commit messageLast commit dateLatest commit History18 Commitsexamplesexamples pydiarpydiar .flake8.flake8 .gitignore.gitignore .pre-commit-config.yaml.pre-commit-config.yaml LICENSELICENSE README.mdREADME.md poetry.lockpoetry.lock pyproject.tomlpyproject.toml View all filesRepository files navigationREADMELicensePyDiar
This repo contains simple to use, pretrained/training-less models for speaker diarization.
Supported Models
Binary Key Speaker Modeling
Based on pyBK by Jose Patino which implements the diarization system from "The EURECOM submission to the first DIHARD Challenge" by Patino, Jose and Delgado, Héctor and Evans, Nicholas
If you have any other models you would like to see added, please open an issue.
Usage
This library seeks to provide a very basic interface. To use the Binary Key model on a file, do something like this:
import numpy as np
from pydiar.models import BinaryKeyDiarizationModel, Segment
from pydiar.util.misc import optimize_segments
from pydub import AudioSegment
INPUT_FILE = "test.wav"
sample_rate = 32000
audio = AudioSegment.from_wav(INPUT_FILE)
audio = audio.set_frame_rate(sample_rate)
audio = audio.set_channels(1)
diarization_model = BinaryKeyDiarizationModel()
segments = diarization_model.diarize(
sample_rate, np.array(audio.get_array_of_samples())
)
optimized_segments = optimize_segments(segments)
Now optimized_segments contains a list of segments with their start, length and speaker id
Example
A simple script which reads an audio file, diarizes it and transcribes it into the WebVTT format can be found in examples/generate_webvtt.py.
To use it, download a vosk model from https://alphacephei.com/vosk/models and then run the script using
poetry install
poetry run python -m examples.generate_webvtt -i PATH/TO/INPUT.wav -m PATH/TO/VOSK_MODEL
About
simple to use, pretrained/training-less models for speaker diarization
Resources
Readme
License
View license
Activity
Custom properties
Stars
20
stars
Watchers
3
watching
Forks
7
forks
Report repository
Releases
2
tags
Sponsor this project
opencollective.com/bugbakery
Learn more about GitHub Sponsors
Packages
0
No packages published
Contributors
3
Languages
Python
100.0%
Footer
© 2024 GitHub, Inc.
Footer navigation
Terms
Privacy
Security
Status
Docs
Contact
Manage cookies
Do not share my personal information
You can’t perform that action at this time.
�App Store 上的“SURGE – Gay Dating & Chat�
退出商店Apple商店MaciPadiPhoneWatchAirPods家居娱乐配件技术支持
0+
App Store 预览
SURGE – Gay Dating & Chat
17+
Match, Meet and Date Hot Men
Cosmic Latte s.r.o
4.6 • 852 个评分
�费
æ��ä¾› App 内è´ä¹°é¡¹ç›®
截�
iPhone
iPad
简介
SURGE是专为男å�Œæ€§æ�‹ã€�å�Œæ€§æ�‹ã€�跨性别和酷儿所设计的应用程åº�。ä¸�论您是想æ�¥åœºçº¦ä¼šã€�寻找爱情或是å�‹æƒ…,SURGE都能满足您ï¼�认识当地想找ä¹�å�或找对象的男å�Œæ€§æ�‹ã€�å�Œæ€§æ�‹ã€�和跨性用户。使用å…�费版SURGE,或å�‡çº§åˆ°é«˜çº§ä¼šå‘˜ï¼Œè§£é”�所有功能,并è�·å¾—更多é…�对机会ï¼�å…�è´¹é…�对和è�Šå¤©â€¢æµ�览—查看附近的用户,喜欢?å�‘å�³æ»‘ã€�ä¸�喜欢?å�‘左滑•é…�对—å�‘å�³æ»‘和您喜欢的用户é…�对•è�Šå¤©â€”é…�对æˆ�功å��å�¯å‰�å¾€è�Šå¤©å®¤ï¼Œç«‹å�³å¼€å§‹å…�è´¹è�Šå¤©ï¼�ä¼ é€�阅å��å�³ç„šçš„ç…§ç‰‡æˆ–å½±ç‰‡ï¼Œæ‚¨ä¹Ÿèƒ½ä¼ é€�GIFs动图和贴图选择您的喜好•ç›é€‰â€”设定您喜爱的年纪和è·�离范围•ç§�人照片— é…�对å��查看您的ç§�人照片•展示您自己—ä»�您的相簿ã€�FB或IGä¸Šä¼ ç…§ç‰‡åˆ°æ‚¨ä¸ªäººæ¡£æ¡ˆä¸çš„公开和ç§�人照片•更快速é…�对—在æˆ�功é…�对之å‰�ï¼Œä¼ é€�Powerä¿¡æ�¯ç»™æ‚¨å–œæ¬¢çš„用户安全ä¸�éš�ç§�•账å�·è®¤è¯�—查看è°�通过认è¯�•ä¿�护应用程åº�—您å�¯ä»¥è®¾å®šæŒ‡çº¹è§£é”�应用程åº�•è�Šå¤©â€”å�ªæœ‰æˆ�功é…�对对象å�¯ä»¥ä¼ 讯æ�¯ç»™æ‚¨â€¢å¿«ç…§â€”ä¼ é€�阅å��å�³ç„šç…§ç‰‡é«˜çº§ä¼šå‘˜åŠŸèƒ½â€¢ ç§�人模å¼�—å�ªæœ‰æ‚¨å–œæ¬¢çš„用户和é…�对对象å�¯ä»¥çœ‹åˆ°æ‚¨â€¢è°�喜欢我—查看对您有兴趣的用户• Powerä¿¡æ�¯â€”æ¯�天å�¯ä¼ é€�最多5则Powerä¿¡æ�¯ç»™æ‚¨å–œæ¬¢çš„ç”¨æˆ·ï¼Œè¿™æ ·ä¸€æ�¥å¯¹æ–¹å°±èƒ½åœ¨æ»‘到您之å‰�ï¼Œçœ‹åˆ°æ‚¨å–œæ¬¢ä»–å’Œä¼ é€�çš„ä¿¡æ�¯ï¼�• æˆ�功é…�对å��照片 — å�ªæœ‰æ‚¨çš„é…�对对象æ‰�看的到的照片• 我的å�†å�²çºªå½•â€”æ�œå¯»å¹¶æ›´æ”¹ä¹‹å‰�对该用户的决定(喜欢/ä¸�喜欢)• å�˜æ›´ä½�置—å�˜æ›´æ‚¨çš„ä½�置,é�‡è§�ä¸�å�ŒåŸ�市的用户• éš�è—�年纪和è·�离—对其他用户éš�è—�您的年纪和è·�离• 进阶ç›é€‰â€”设定您喜欢的ç›é€‰æ�¡ä»¶æˆ–å�ªæ˜¾ç¤ºç»�认è¯�用户•贴图—在è�Šå¤©å®¤ä¸ä½¿ç”¨SURGE特製贴图高级会员• 我们æ��ä¾›1个月ã€�3个月和12个月的高级会员订阅方案• 除é��您在目å‰�订阅方案到期å‰�24å°�时将自动ç»è®¢åŠŸèƒ½å…³é—,å�¦åˆ™å°†ä¼šè‡ªåŠ¨ç»è®¢â€¢ç”¨æˆ·å�¯è‡ªè¡Œç®¡ç�†è®¢é˜…,在订阅å��å�¯å‰�往账å�·è®¾å®šå°†è‡ªåŠ¨ç»è®¢åŠŸèƒ½å…³é—å…³äº�我们我们致力äº�将男å�Œå¿—和男å�Œæ€§æ�‹ç”¨æˆ·è�šé›†åœ¨ä¸€ä¸ªç‰¹åˆ«çš„ç�¯å¢ƒä¸ï¼Œè¿™å°†æ”¹å�˜æ‚¨å’Œå…¶ä»–用户相é�‡å’Œçº¦ä¼šçš„æ–¹å¼�。我们是一个开放的平å�°ï¼Œåœ¨è¿™è£¡ï¼Œæ‚¨å�¯ä»¥åœ¨å�šè‡ªå·±å�Œæ—¶ï¼Œå¯»æ‰¾ç�†æƒ³ä¸çš„对象。我们的座å�³é“æ˜¯ã€Œæ— æ ‡ç±¤ã€�,所以ä¸�论您是熊还是猴,都没有关係。ä¸�妨æ�¥è¯•è¯•ï¼Œï¼Œå¹¶ä»�众多的个人档案ä¸ï¼Œæ‰¾åˆ°å±�äº�您的那个完ç¾�对象。给SURGE一个机会,改å�˜æ‚¨é�‡è§�下个帅哥的方å¼�。任何形å¼�的裸露ã€�æ€§æš—ç¤ºå’Œè‰²æƒ…ç…§ç‰‡éƒ½æ˜¯ä¸¥æ ¼ç¦�æ¢çš„ï¼Œæ‰€æœ‰å…¬ç„¶è£¸éœ²å’Œè£¸ä½“ç…§éƒ½ä¼šè¢«åˆ é™¤ã€‚æ‚¨éœ€æ»¡18å²�æ‰�能注册使用SURGE应用程åº�。è�”络我们•24/7客æœ�:我们在这æ��供您ä¸æ–‡å��助,è�”繫我们的客æœ�,我们会尽快å›�覆您•æ„�è§�å��馈:有任何建议或å��馈å�—?我们é‡�视您的æ„�è§�,让我们一起努力,使平å�°å�˜å¾—更好。到éš�ç§�政ç–了解更多资讯:http://www.surgeapp.co/privacyhttp://www.surgeapp.com/terms追踪我们Facebook @surgeapp.coInstagram @surgeappTiktok: @surge_app
新内容
2024年2月20日
版本 10.15.1
- 错误修æ£å’Œæ€§èƒ½æ”¹è¿›
评分�评论
4.6(满分 5 分)
852 个评分
852 个评分
mr.weng大�男
,
2019/10/03
五星��这款软件
本人使用过一段时间��评价,很喜欢这款软件。界�很简�也很棒�功能基本�全,也基本够用,��更多的朋�使用这款。
开�人员��
,
ä½ å¥½ï¼Œé��常感è¬�ä½ çš„å��饋ï¼�
劣质对象
,
2017/09/04
é‡‘æ— è¶³èµ¤ äººæ— å®Œäºº
这个软件很好,照片都有很清楚,é…�对了æ‰�å�¯ä»¥è�Šå¤©ï¼Œå°±ç®—是需è¦�é’±æ‰�å�¯ä»¥çœ‹é‚£å…ˆä¸�说制作方也需è¦�å�ƒé¥ï¼Œæ��出æ�¥çš„æ„�è§�制作方,也很快解决我相信以å��这个软件会å�šçš„更好更大,想我在继ç»åŠªåŠ›å®Œå–„ï¼�总体还是很好ï¼�
martinno2
,
2019/10/01
5分
这个软件挺�错的,节目简�,机制也挺好的,就是好�用的人还�是很多,�离�制有点�,但总体是�常�错的,希望开�者越�越好�
开�人员��
,
ä½ å¥½ï¼Œé��常感è¬�ä½ æ£é�¢çš„評價ï¼�
App ��
å¼€å�‘者“Cosmic Latte s.r.oâ€�已表æ˜�该 App çš„éš�ç§�规范å�¯èƒ½åŒ…括了下述的数æ�®å¤„ç�†æ–¹å¼�。有关更多信æ�¯ï¼Œè¯·å�‚阅开å�‘者éš�ç§�政ç–。
用äº�è¿½è¸ªä½ çš„æ•°æ�®
以下数æ�®å�¯èƒ½ä¼šç”¨äº�在其他公å�¸çš„ App 和网站ä¸è¿½è¸ªä½ :
æ ‡è¯†ç¬¦
使用数�
诊æ–
ä¸�ä½ å…³è�”çš„æ•°æ�®
å¼€å�‘者å�¯èƒ½ä¼šæ”¶é›†ä»¥ä¸‹æ•°æ�®ï¼Œä¸”æ•°æ�®ä¸�ä½ çš„èº«ä»½å…³è�”:
�置
�系信�
用户内容
æ ‡è¯†ç¬¦
�感信�
未ä¸�ä½ å…³è�”çš„æ•°æ�®
å¼€å�‘者å�¯èƒ½ä¼šæ”¶é›†ä»¥ä¸‹æ•°æ�®ï¼Œä½†æ•°æ�®ä¸�会关è�”ä½ çš„èº«ä»½ï¼š
使用数�
诊æ–
éš�ç§�处ç�†è§„范å�¯èƒ½åŸºäº�ä½ ä½¿ç”¨çš„åŠŸèƒ½æˆ–ä½ çš„å¹´é¾„ç‰å› ç´ è€Œæœ‰æ‰€ä¸�å�Œã€‚了解更多
信�
供应商
Cosmic Latte s.r.o
大�
617.9 MB
类別
生活
兼容性
iPhone
设备需装有 iOS 14.0 或更高版本。
iPad
设备需装有 iPadOS 14.0 或更高版本。
iPod touch
设备需装有 iOS 14.0 或更高版本。
Apple Vision
设备需装有 visionOS 1.0 或更高版本。
è¯è¨€
俄文, 土耳其文, 德文, æ„�大利文, æ�·å…‹è¯ï¼Œ 日文, 法è¯ï¼Œ 波兰文, 泰文, ç‘�典文, 简体ä¸æ–‡ï¼Œ ç¹�体ä¸æ–‡ï¼Œ 英è¯ï¼Œ è�·å…°æ–‡ï¼Œ è‘¡è�„牙文, 西ç�牙文, 越å�—文, 韩文
年龄分级
17+
�尔/轻微的色情内容或裸露
频�/强烈的�人或性暗示题�
Copyright
© 2023 Cosmic Latte s.r.o.
ä»·æ ¼
�费
App 内è´ä¹°é¡¹ç›®
Premium Membership
Â¥68.00
Premium Membership
Â¥138.00
Premium Membership
Â¥63.00
Premium Membership
Â¥398.00
Premium Membership
Â¥83.00
Premium Membership
Â¥128.00
Premium Membership
Â¥33.00
Premium Membership
Â¥173.00
Premium Membership
Â¥10.00
Premium Membership
Â¥103.00
开�人员网站
App 支�
éš�ç§�政ç–
开�人员网站
App 支�
éš�ç§�政ç–
更多æ�¥è‡ªæ¤å¼€å�‘人员的 App
Zoe: 女�性�约会和交�软件
社交
ä½ å�¯èƒ½ä¹Ÿä¼šå–œæ¬¢
Manhunt – Gay Chat, Meet, Date
生活
翻咔 。�志 。�志交�软件 - Gay Poof
生活
Heaven: Gay & LGBTQ+ Dating
生活
�密全�男�志交�活动社区-GFUN
生活
Lesbian Singles - 女�性�交�应用
生活
Mingle2 Dating App, �天,约会,新朋�
生活
更多选购方式:查找你附近的 Apple Store 零售店及更多门店,或者致电 400-666-8800。
Copyright © 2023 Apple Inc. 保留所有权利。
隐私政策
使用条款
销售政策
法律信息
网站地图